Upper Extremity Robotic Rehabilitation in Patients With Hemiplegia
NCT ID: NCT04393480
Last Updated: 2020-05-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
37 participants
INTERVENTIONAL
2016-04-14
2019-04-14
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Upper Extremity Robot-Assisted Therapy in Stroke Patients
NCT06382454
Robotic Rehabilitation and Dual-Task Exercises in Hemiplegic Patients
NCT06709222
Combined Robotic Hand Rehabilitation and Conventional Rehabilitation for Post-stroke Rehabilitation
NCT06184191
Effects of Robot-Assisted Upper Extremity Training on Cognitive and Physical Functions After Stroke
NCT04335422
Effects of Robot-Assisted Rehabilitation on Upper Extremity Functions in Chronic Stroke
NCT06306313
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
SUPPORTIVE_CARE
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Robotic therapy
Robotic rehabilitation and conventional rehabilitation
Robotic therapy
ReoGo™ - Motorika robotic therapy - upper extremity robotic rehabilitation system
Conventional therapy
Range of Motion (ROM) exercises, muscle strengthening, balance and mobility training, exercises for enhancing activities of daily life, neurophysiological exercises, turnings, bed movements, bridge building, sitting and transfer training, gait training, proprioceptive exercises, balance exercises on the balance board of those affected by the cerebellar system, occupational therapy, cognitive rehabilitation by the relevant psychologist given to those with cognitive impairment
Conventional therapy
Conventional rehabilitation
Conventional therapy
Range of Motion (ROM) exercises, muscle strengthening, balance and mobility training, exercises for enhancing activities of daily life, neurophysiological exercises, turnings, bed movements, bridge building, sitting and transfer training, gait training, proprioceptive exercises, balance exercises on the balance board of those affected by the cerebellar system, occupational therapy, cognitive rehabilitation by the relevant psychologist given to those with cognitive impairment
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Robotic therapy
ReoGo™ - Motorika robotic therapy - upper extremity robotic rehabilitation system
Conventional therapy
Range of Motion (ROM) exercises, muscle strengthening, balance and mobility training, exercises for enhancing activities of daily life, neurophysiological exercises, turnings, bed movements, bridge building, sitting and transfer training, gait training, proprioceptive exercises, balance exercises on the balance board of those affected by the cerebellar system, occupational therapy, cognitive rehabilitation by the relevant psychologist given to those with cognitive impairment
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Being an adult
* Having a duration of 4 to 30 months after stroke
* A score greater than 16 in mini-mental test
* Upper extremity Brunnstrom stage 2 or higher
* Being a fluent speaker in Turkish.
Exclusion Criteria
* Skin ulcers
* Multiple cerebrovascular events
* Severe decompensated diseases (cardiopulmonary, neurological, orthopedic and psychiatric etc), cardiac pacemakers, severe neuropsychological impairment,
* Neglect syndrome
* Spasticity greater than 3 in Modified Ashworth Scale
* Severe joint contractures
* Botulinum toxin-A injection in their upper extremity and dose change in drugs for spasticity in the last 3 months.
18 Years
85 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Sahel Taravati, M.D.
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Sahel Taravati, M.D.
Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Sahel Taravati
Izmir, Bornova, Turkey (Türkiye)
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Özcan O, Arpacıoğlu O, et al. Nörorehabilitasyon: Güneş & Nobel Tıp Kitabevleri; 2000
Oğuz H, Dursun E, et al. Tıbbi rehabilitasyon: Nobel Tıp Kitabevleri; 2004
Norouzi-Gheidari N, Archambault PS, Fung J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev. 2012;49(4):479-96. doi: 10.1682/jrrd.2010.10.0210.
Rosati G, Oscari F, Reinkensmeyer DJ, Secoli R, Avanzini F, Spagnol S, Masiero S. Improving robotics for neurorehabilitation: enhancing engagement, performance, and learning with auditory feedback. IEEE Int Conf Rehabil Robot. 2011;2011:5975373. doi: 10.1109/ICORR.2011.5975373.
Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997 Apr;54(4):443-6. doi: 10.1001/archneur.1997.00550160075019.
Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010 May 13;362(19):1772-83. doi: 10.1056/NEJMoa0911341. Epub 2010 Apr 16.
Nef T., Klamroth-Marganska V., Keller U., Riener R. (2016) Three-Dimensional Multi-degree-of-Freedom Arm Therapy Robot (ARMin). In: Reinkensmeyer D., Dietz V. (eds) Neurorehabilitation Technology. Springer, Cham
Chang WH, Kim YH. Robot-assisted Therapy in Stroke Rehabilitation. J Stroke. 2013 Sep;15(3):174-81. doi: 10.5853/jos.2013.15.3.174. Epub 2013 Sep 27.
Teasell R, Foley N, Salter K, Bhogal S, Jutai J, Speechley M. Evidence-Based Review of Stroke Rehabilitation: executive summary, 12th edition. Top Stroke Rehabil. 2009 Nov-Dec;16(6):463-88. doi: 10.1310/tsr1606-463. No abstract available.
Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002 Jul;83(7):952-9. doi: 10.1053/apmr.2001.33101.
Teasell R, Bayona N, et al. Background concepts in stroke rehabilitation. Evidence-Based Review of Stroke Rehabilitation. 2008
Masiero S, Armani M, Ferlini G, Rosati G, Rossi A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabil Neural Repair. 2014 May;28(4):377-86. doi: 10.1177/1545968313513073. Epub 2013 Dec 6.
Taveggia G, Borboni A, Salvi L, Mule C, Fogliaresi S, Villafane JH, Casale R. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Eur J Phys Rehabil Med. 2016 Dec;52(6):767-773. Epub 2016 Jul 13.
Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabil Neural Repair. 2017 Feb;31(2):107-121. doi: 10.1177/1545968316666957. Epub 2016 Sep 24.
Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006 Mar-Apr;43(2):171-84. doi: 10.1682/jrrd.2005.04.0076.
Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro RS. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017 Sep;38(9):1561-1569. doi: 10.1007/s10072-017-2995-5. Epub 2017 May 24.
Poli P, Morone G, Rosati G, Masiero S. Robotic technologies and rehabilitation: new tools for stroke patients' therapy. Biomed Res Int. 2013;2013:153872. doi: 10.1155/2013/153872. Epub 2013 Nov 20.
Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B, Guidali M, Kollmar A, Luft A, Nef T, Schuster-Amft C, Stahel W, Riener R. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014 Feb;13(2):159-66. doi: 10.1016/S1474-4422(13)70305-3. Epub 2013 Dec 30.
Takahashi K, Domen K, Sakamoto T, Toshima M, Otaka Y, Seto M, Irie K, Haga B, Takebayashi T, Hachisuka K. Efficacy of Upper Extremity Robotic Therapy in Subacute Poststroke Hemiplegia: An Exploratory Randomized Trial. Stroke. 2016 May;47(5):1385-8. doi: 10.1161/STROKEAHA.115.012520. Epub 2016 Mar 22.
Tomic TJ, Savic AM, Vidakovic AS, Rodic SZ, Isakovic MS, Rodriguez-de-Pablo C, Keller T, Konstantinovic LM. ArmAssist Robotic System versus Matched Conventional Therapy for Poststroke Upper Limb Rehabilitation: A Randomized Clinical Trial. Biomed Res Int. 2017;2017:7659893. doi: 10.1155/2017/7659893. Epub 2017 Jan 31.
Zhang C, Li-Tsang CW, Au RK. Robotic approaches for the rehabilitation of upper limb recovery after stroke: a systematic review and meta-analysis. Int J Rehabil Res. 2017 Mar;40(1):19-28. doi: 10.1097/MRR.0000000000000204.
Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21. doi: 10.1177/1545968307305457. Epub 2007 Sep 17.
Taravati S, Capaci K, Uzumcugil H, Tanigor G. Evaluation of an upper limb robotic rehabilitation program on motor functions, quality of life, cognition, and emotional status in patients with stroke: a randomized controlled study. Neurol Sci. 2022 Feb;43(2):1177-1188. doi: 10.1007/s10072-021-05431-8. Epub 2021 Jul 11.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
STKC2019
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.