Quality of Life and Physical Performance After Novel Coronavirus Infection (COVID-19);
NCT ID: NCT04375709
Last Updated: 2020-05-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
60 participants
OBSERVATIONAL
2020-03-15
2021-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
It is expected that patients hospitalized due to COVID-19 infection show a reduction in physical performance and HRQOL directly after discharge. The severity of illness is hypothesized to be associated with a reduction as well in HRQOL and physical performance after one-year post-discharge.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of COVID-19 Hospitalization on Physical Performance
NCT04751630
Physical Activity and the Risk of COVID-19 Infection and Mortality
NCT04631861
EXercise TRAining and Sedentary Lifestyle on Clinical Outcomes in Patients With COVID-19
NCT04396353
Exercise and Post-COVID/ Long-COVID: Effects of Different Training Modalities on Various Parameters in People Affected by the Sequelae of COVID-19
NCT05204511
Low Versus Moderate-intensity Aerobic Training in Post-discharge COVID-19 Subjects
NCT05373407
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In this acute situation of the pandemic, there is an enormous urge to finding a vaccine or medications to release or prevent severe symptoms and complications due to the new virus. Therefore, in the listed studies keen interest is on drug interventions to stop the expansion of this virus. However, knowledge on long-term consequences of physical condition and psychological state is unknown. Although, taking into account the clinical manifestation observed in the severe cases negative long-term consequences have to be expected as described in the following paragraph.
Up to date knowledge exist on the clinical manifestation which varies from asymptomatic to severe disease with approximately 80% of the cases found to present an asymptomatic carrier.
Thus, about 13.8% to 35% is suffering a severe course including dyspnoea, respiratory frequency ≥30/minute, desaturation of blood oxygen (≤93%) and or lung infiltrates \>50% of the lung within 24-48 hours. Further signs of hospitalized individuals are fever, cough, myalgia, fatigue and sputum production. In literature, the clinical picture is described as bilateral pneumonia or acute respiratory distress syndrome which leads to a severe organ failure of the lung. These patients require oxygen therapy with invasive (17%) or non-invasive (14%) mechanically assisted ventilation. And the higher probability of preloaded organ dysfunctions due to co-morbidities most often high blood pressure (13%), diabetes (4-6%) and COPD (1-5%) has to be taken into account.
According to the WHO report and Lai et al (2020) between 6.1% to 28%, respectively, were found to be in a critical stage. Acute respiratory failure, septic shock and/ or multiple organ failure defined this stage. According to a retrospective analysis from a large population in Wuhan, these patients require intensive care with most of them presenting (multi) organ failure with acute respiratory distress (ARDS, 67%), acute kidney injury (29%), cardiac injury (23%), and liver dysfunction (29%). These patients require invasive or non-invasive mechanical ventilation. The mortality rate for critically ill COVID-19 patients varies from 1-4% to 4.3% according to large studies reported by Lai et al. (2020).
According to these statistics, about 4.3% of the 280 patients requiring intensive care in Switzerland (n=12) would not survive. Taking the current number of 2730 hospitalised patients reported above, these statistics result in about 2718 individuals surviving severe illness in Switzerland. A critical point is the high risk of the length of stay on the ward as explained in the following paragraph.
Patients in the severe and critical state are likely to suffer prolonged length of stay in the hospital according to Lia et al. (2020) and Wang et al. (2020) (±21 days). Studies on ARDS and critically ill patients led to strong evidence that prolonged length of stay, particularly with prolonged mechanical ventilation, leads to a significant negative impact on lung function, physical activity and emotional state. For example, from 109 patients suffered an ARDS (age interquartile from 35 to 57) the 5 years follow up showed a relevant reduction on physical condition (76% of the distance in the 6 Minute Walk Test (6MWT)) when compared to age and sex-matched norm values. Interestingly, these deficits were found despite normal to "near"-normal pulmonary function. A recent post-hoc analysis on 116 patients mechanically ventilated for at least \>24h showed that a longer duration of mechanical ventilation and exposure to norepinephrine were associated with intensive-care-unit acquired weakness (ICU-AW; defined as \<48/100 on the Medical Research Council Score). Hatch et al. (2018) for example found in their multicenter follow-up study, that 46% of the survivors of critical illness suffered from anxiety, 40% from depression and 22% from post-traumatic stress disorder (PTSD). In the specific population of ARDS survivors (n=74) numbers are slightly lower ranging from moderate to severe depression in 16% and 23%, respectively and for anxiety 24% and 23% at 1 and 2 years, respectively. These findings on survivors of ARDS and critical illness underline the assumption that survivors of a COVID-19 induced hospitalized will suffer from physical and psychological long-term consequences.
In research on critical illness post-ICU, only moderate evidence and large risk of bias exist on the effect of follow-up rehabilitation post-ICU. However, some qualitative studies support the thought that patients might need additional care after discharge home. King et al. (2019) investigated in their scoping review of qualitative studies the needs of critical illness survivors and found that after discharge home patients had continuing information needs on understanding their critical illness and coping with the long-term sequelae and stress.
These qualitative findings were underlined and supported by quantitative studies investigating long-term effects in this population. In patients who suffered an acute respiratory failure greatest change in physical function was found two months after discharge. And in ICU survivors requiring one or more weeks of mechanical ventilation the degree of disability one week after ICU discharge was predictive for physical and mental recovery and mortality in the one-year follow up.
In contrast to the findings on critical illness aftercare programs were found having a positive impact in a population with pulmonary disease. In survivors of ARDS due to severe influenza, A pneumonitis an 8-week pulmonary rehabilitation program improved significantly exercise capacity and quality of life improved significantly. And in patients with chronic obstructive pulmonary disease (COPD), the American Thoracic Society recommends respiratory rehabilitation early after discharge. Furthermore, according to the NICE guidelines "Rehabilitation after critical illness in adults" patients with rehabilitation needs should be seen two to three months after hospital discharge and should be reassessed to establish health and social care needs.
Additionally, based on an expert consensus following questions are still unanswered and considered as being relevant for the rehabilitation of these patients. Some examples are listed below:
* "What proportion of COVID-19 survivors have (extra-pulmonary) physical, functional, emotional and sociable treatable traits, justifying rehabilitation…?"
* "What types of patients will exist post-COVID-19 (e.g. good recovery, frailty, persistent respiratory impairment) and in what proportion?"
* "What is the impact of a COVID-19-related prolonged ward stay on physical and emotional functioning?
* What are the opportunities to intervene early, immediately post-acute hospital discharge?
* For how long after hospital discharge are COVID-19 survivors contagious? The latter two questions are cardinal to provide safe and feasible rehabilitation post-acute hospital discharge. To present the feasibility and safety of the aftercare program developed and conducted on the study site a short excurse on literature is provided.
Recent knowledge (published February 28 and 1st of April) from high impact journals give following solid time frames on viral shedding according to the traceability of Covid-19 RNA. Reverse transcription-polymerase chain reaction (RT-PCR) of virus RNA was used to measure the quantity of virus RNA in both studies.
Wölfel and colleagues isolated the virus daily from sputum, pharyngeal swabs, and stool since the first day of symptom onset. The samples were taken from individuals with mild to moderate symptoms (e.g. symptoms of lung affection). Maximal viral load was found before 5 days in these participants with the mild course being highest in stool and sputum. Based on their findings authors state that being 10 days beyond symptoms and less than 100,000 viral RNA copies per ml of sputum do have a little residual risk of infectivity, based on cell culture. Ling et al., isolated viral RNA from 66 participants post-Covid-19 infection as well from the stool, urine, and blood specimens during the convalescence. These samples were obtained from patients who survived a severe course of infection. The longest duration from onset of symptoms to first negative RT-PCR results for oropharyngeal swabs of convalescent patients was 22 days.
Zhou et al. (2020) studied as well the viral shedding with the daily analysis using PCR of Covid-19 throat swab specimens from 191 patients. For survivors, the duration of viral shedding showed an interquartile range of 17 to 22 days in patients with severe disease status (survivors). In summary, current knowledge shows the duration of viral traceability and thus the risk of infection from 10 to 22 days in patients with mild and severe illness, respectively. The average time to incubation found ranged from 5.2 to 12.5 days (Zhou et al., 2020) and average hospital duration ranged from 7 to 15 days in the 425 patients from Wuhan.
Therefore, subtracting lowest period of incubation (5 days) from the maximal duration of viral shedding (22 days) resulting in 17 days after first confirmed diagnose to be safe for hospital on-site testing. Based on this data and adding the criteria 4 days without specific COVID-19 symptoms (described in chapter 6.2.1), the committee developing the specific aftercare program - from which data will be taken for this study - considered as safe and feasible inviting patients post-acute hospital discharge when 14 days post diagnose and the mentioned four days (total ≥18 days).
In summary, there is a lack of knowledge on long term consequences of physical, emotional and quality of life outcomes. The similarity of clinical manifestation of the COVID-19 infection with ARDS or/and critical illness leads to the consideration of evidence found in this patient population. This evidence points out the high risk of long-term deficits on the above-mentioned outcomes and the relevance of patient-tailored rehabilitation programs.
Therefore, we consider it as essential to gather and analyse data on short and long-term quality of life and physical performance of patients after hospitalization due to COVID-19 infection.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Physical exercise
The intervention consists out of combined aerobic and strength exercise supervised and guided by specialized physical therapists; additional methods like functional electrical stimulation or oxygen supplementation are added during the main training if indicated.
Education sessions
Sessions include information on physical activity (behaviour), coping with stress and anxiety, dyspnoe, or fatigue; Professional support is given in case of risk for nutritional deficits or post-traumatic stress; sessions are conducted by medical specialists or specialized physiotherapists. All sessions are individually-tailored. In case of nutrition or psychological issues individual sessions are guided by specific health-professionals.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* with or without mechanically assisted ventilation
* being at risk to obtain severe illness caused by the COVID-19\*
* individuals without defined risk factors but requiring oxygenation during hospitalisation
* Agree to general consent or specific consent to subsequent use of his/her personal health data for research purpose
* German-speaking
Exclusion Criteria
* Individuals who are immunocompromised due to medical treatment
* A documented objection of subsequent use of personal health data
* fever \>37.3° C
* sore throat,
* cough (productive or non-productive)
* common cold
Also, treatment-based immunocompromised patients are excluded for on-site evaluation and training.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Kantonsspital Winterthur KSW
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
David Gisi
Role: STUDY_DIRECTOR
Kantonsspital Winterthur KSW
Martina Betschart, PhD
Role: PRINCIPAL_INVESTIGATOR
Kantonsspital Winterthur KSW
Spencer Rezek, MSc Cand.
Role: STUDY_CHAIR
Kantonsspital Winterthur KSW
Ines Unger, MSc Cand.
Role: STUDY_CHAIR
Kantonsspital Winterthur KSW
Natalie Ott, MSc Cand.
Role: STUDY_CHAIR
Kantonsspital Winterthur KSW
Swantje Beyer, MD
Role: STUDY_CHAIR
Kantonsspital Winterthur KSW
Markus Hofer, MD
Role: STUDY_CHAIR
Kantonsspital Winterthur KSW
Karrer Urs, PD MD
Role: STUDY_CHAIR
Kantonsspital Winterthur KSW
Giuseppe Mungo, MSc
Role: STUDY_CHAIR
Kantonsspital Winterthur KSW
Cornel Sieber, Prof. MD
Role: STUDY_DIRECTOR
Kantonsspital Winterthur KSW
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Kantonsspital Winterthur
Winterthur, Canton of Zurich, Switzerland
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brunink S, Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020 May;581(7809):465-469. doi: 10.1038/s41586-020-2196-x. Epub 2020 Apr 1.
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 May;8(5):475-481. doi: 10.1016/S2213-2600(20)30079-5. Epub 2020 Feb 24.
Zanini A, Aiello M, Adamo D, Casale S, Cherubino F, Della Patrona S, Raimondi E, Zampogna E, Chetta A, Spanevello A. Estimation of minimal clinically important difference in EQ-5D visual analog scale score after pulmonary rehabilitation in subjects with COPD. Respir Care. 2015 Jan;60(1):88-95. doi: 10.4187/respcare.03272. Epub 2014 Oct 21.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3. Epub 2020 Mar 11.
Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983 Jun;67(6):361-70. doi: 10.1111/j.1600-0447.1983.tb09716.x.
Arabi YM, Murthy S, Webb S. Correction to: COVID-19: a novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020 May;46(5):1087-1088. doi: 10.1007/s00134-020-06009-2.
Bohannon RW. Muscle strength: clinical and prognostic value of hand-grip dynamometry. Curr Opin Clin Nutr Metab Care. 2015 Sep;18(5):465-70. doi: 10.1097/MCO.0000000000000202.
Dres M, Jung B, Molinari N, Manna F, Dube BP, Chanques G, Similowski T, Jaber S, Demoule A. Respective contribution of intensive care unit-acquired limb muscle and severe diaphragm weakness on weaning outcome and mortality: a post hoc analysis of two cohorts. Crit Care. 2019 Nov 21;23(1):370. doi: 10.1186/s13054-019-2650-z.
Gandotra S, Lovato J, Case D, Bakhru RN, Gibbs K, Berry M, Files DC, Morris PE. Physical Function Trajectories in Survivors of Acute Respiratory Failure. Ann Am Thorac Soc. 2019 Apr;16(4):471-477. doi: 10.1513/AnnalsATS.201806-375OC.
Hatch R, Young D, Barber V, Griffiths J, Harrison DA, Watkinson P. Anxiety, Depression and Post Traumatic Stress Disorder after critical illness: a UK-wide prospective cohort study. Crit Care. 2018 Nov 23;22(1):310. doi: 10.1186/s13054-018-2223-6.
Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM; Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011 Apr 7;364(14):1293-304. doi: 10.1056/NEJMoa1011802.
Hosey MM, Bienvenu OJ, Dinglas VD, Turnbull AE, Parker AM, Hopkins RO, Neufeld KJ, Needham DM. The IES-R remains a core outcome measure for PTSD in critical illness survivorship research. Crit Care. 2019 Nov 19;23(1):362. doi: 10.1186/s13054-019-2630-3. No abstract available.
Hsieh MJ, Lee WC, Cho HY, Wu MF, Hu HC, Kao KC, Chen NH, Tsai YH, Huang CC. Recovery of pulmonary functions, exercise capacity, and quality of life after pulmonary rehabilitation in survivors of ARDS due to severe influenza A (H1N1) pneumonitis. Influenza Other Respir Viruses. 2018 Sep;12(5):643-648. doi: 10.1111/irv.12566. Epub 2018 Jun 12.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.
King J, O'Neill B, Ramsay P, Linden MA, Darweish Medniuk A, Outtrim J, Blackwood B. Identifying patients' support needs following critical illness: a scoping review of the qualitative literature. Crit Care. 2019 May 24;23(1):187. doi: 10.1186/s13054-019-2441-6.
Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, Ko WC, Hsueh PR. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect. 2020 Jun;53(3):404-412. doi: 10.1016/j.jmii.2020.02.012. Epub 2020 Mar 4.
Ling Y, Xu SB, Lin YX, Tian D, Zhu ZQ, Dai FH, Wu F, Song ZG, Huang W, Chen J, Hu BJ, Wang S, Mao EQ, Zhu L, Zhang WH, Lu HZ. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020 May 5;133(9):1039-1043. doi: 10.1097/CM9.0000000000000774.
Major ME, Kwakman R, Kho ME, Connolly B, McWilliams D, Denehy L, Hanekom S, Patman S, Gosselink R, Jones C, Nollet F, Needham DM, Engelbert RH, van der Schaaf M. Surviving critical illness: what is next? An expert consensus statement on physical rehabilitation after hospital discharge. Crit Care. 2016 Oct 29;20(1):354. doi: 10.1186/s13054-016-1508-x.
Sillen MJ, Franssen FM, Delbressine JM, Vaes AW, Wouters EF, Spruit MA. Efficacy of lower-limb muscle training modalities in severely dyspnoeic individuals with COPD and quadriceps muscle weakness: results from the DICES trial. Thorax. 2014 Jun;69(6):525-31. doi: 10.1136/thoraxjnl-2013-204388. Epub 2014 Jan 7.
Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, Lee AL, Camillo CA, Troosters T, Spruit MA, Carlin BW, Wanger J, Pepin V, Saey D, Pitta F, Kaminsky DA, McCormack MC, MacIntyre N, Culver BH, Sciurba FC, Revill SM, Delafosse V, Holland AE. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014 Dec;44(6):1447-78. doi: 10.1183/09031936.00150414. Epub 2014 Oct 30.
Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, Hill K, Holland AE, Lareau SC, Man WD, Pitta F, Sewell L, Raskin J, Bourbeau J, Crouch R, Franssen FM, Casaburi R, Vercoulen JH, Vogiatzis I, Gosselink R, Clini EM, Effing TW, Maltais F, van der Palen J, Troosters T, Janssen DJ, Collins E, Garcia-Aymerich J, Brooks D, Fahy BF, Puhan MA, Hoogendoorn M, Garrod R, Schols AM, Carlin B, Benzo R, Meek P, Morgan M, Rutten-van Molken MP, Ries AL, Make B, Goldstein RS, Dowson CA, Brozek JL, Donner CF, Wouters EF; ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013 Oct 15;188(8):e13-64. doi: 10.1164/rccm.201309-1634ST.
Taito S, Yamauchi K, Tsujimoto Y, Banno M, Tsujimoto H, Kataoka Y. Does enhanced physical rehabilitation following intensive care unit discharge improve outcomes in patients who received mechanical ventilation? A systematic review and meta-analysis. BMJ Open. 2019 Jun 9;9(6):e026075. doi: 10.1136/bmjopen-2018-026075.
Tipping CJ, Young PJ, Romero L, Saxena MK, Dulhunty J, Hodgson CL. A systematic review of measurements of physical function in critically ill adults. Crit Care Resusc. 2012 Dec;14(4):302-11.
Related Links
Access external resources that provide additional context or updates about the study.
Verified the 27th of April
verified the 2nd of April 2020
verified the 2nd of April 2020
verified the 9nd of April 2020
Guidelines on management of critical illness; verified the 9th of April 2020
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2020_00899 / COV19_2020
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.