Prevalence and Clinical Effect of IDH1/2 Mutations in Patients With Acute Myeloid Leukemia

NCT ID: NCT04369287

Last Updated: 2020-05-13

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

654 participants

Study Classification

OBSERVATIONAL

Study Start Date

2016-01-01

Study Completion Date

2020-12-15

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Among the most notable cancer genome-wide sequencing discoveries in recent years was the finding of mutation hot-spots in the isocitrate dehydrogenase (IDH) genes in grade II/III astrocytomas and oligodendrogliomas and in secondary glioblastomas. This was rapidly followed by identification of recurrent IDH1/2 mutations in myeloid neoplasms (MN), including acute myeloid leukemia (AML). Mutant IDH is now a therapeutic target of great interest in cancer research, especially in AML, given the limitations of current approved therapies and the encouraging early clinical data demonstrating proof of concept for investigational mutant IDH1/2 inhibitors.

The origin of mutations in AML was explored by investigating the clonal evolution of genomes sequenced from patients with M1- or M3-AML and comparing them with hematopoietic stem/progenitor cells (HSPCs) from healthy volunteers. Six genes were found to have statistically higher mutation frequencies in M1 versus M3 genomes (NPM1, DNMT3A, IDH1, IDH2, TET2 and ASXL1), suggesting they are initiating rather than cooperating events. Prospective evaluation of serial 2- HG levels during treatment of newly diagnosed AML treated with standard chemotherapy revealed that both 2-HG level and mutated IDH allele burden decreased with response to treatment but began to rise again as therapy failed.

The prognostic impact of IDH mutations in AML is under continued investigation and varies across studies. In this research project authors aim a) to define the prevalence and type of IDH1/2 mutations in AML patients; b) to define relationships between IDH1/2 mutations and other oncogenic mutations in AML, as well as to describe clonal evolution of the disease and c) to describe the clinical outcome of IDH1/2 mutated patients with AML treated with currently available treatments.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Among the most notable cancer genome-wide sequencing discoveries in recent years was the finding of mutation hot-spots in the isocitrate dehydrogenase (IDH) genes in grade II/III astrocytomas and oligodendrogliomas and in secondary glioblastomas. This was rapidly followed by identification of recurrent IDH1/2 mutations in myeloid neoplasms (MN), including acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN).

Mutant IDH is now a therapeutic target of great interest in cancer research, especially in AML, given the limitations of current approved therapies and the encouraging early clinical data demonstrating proof of concept for investigational mutant IDH1/2 inhibitors.

There is evidence to suggest that IDH mutations may cooperate with other mutations to initiate and drive oncogenesis in myeloid malignancies. High levels of 2-hydroxyglutarate (2-HG, as a result of gene mutation) have been shown to inhibit αKG-dependent dioxygenases including histone and DNA demethylases, proteins that regulate cellular epigenetic status. Consistent with 2-HG promoting cancer via an effect on chromatin structure, tumors harboring IDH mutations display a CpG island methylator phenotype. More recent studies have shown that overexpression of mutant IDH enzymes can induce histone and DNA hypermethylation, as well as block cellular differentiation. Together, these data suggest that cancer-associated IDH mutations can induce a block in cellular differentiation through epigenetic modifications, which contributes to tumor initiation and progression, and thus support the clinical evaluation of agents targeted to mutant IDH

The origin of mutations in AML was explored by investigating the clonal evolution of genomes sequenced from patients with M1- or M3-AML and comparing them with hematopoietic stem/progenitor cells (HSPCs) from healthy volunteers. Six genes were found to have statistically higher mutation frequencies in M1 versus M3 genomes (NPM1, DNMT3A, IDH1, IDH2, TET2 and ASXL1), suggesting they are initiating rather than cooperating events. Furthermore, all of these genes have been shown to play a role in chromatin modification, suggesting that epigenetic alterations may function to initiate tumorigenesis.

Prospective evaluation of serial 2-HG levels during treatment of newly diagnosed AML treated with standard chemotherapy revealed that both 2-HG level and mutated IDH allele burden decreased with response to treatment but began to rise again as therapy failed.

The prognostic impact of IDH mutations in AML is under continued investigation and varies across studies

In this research project, the authors aim:

1. To define the prevalence and type of IDH1/2 mutations in acute myeloid leukemias.
2. To define genotype-phenotype relationship in IDH1/2 mutated patients.
3. To define relationships between IDH1/2 mutations and other oncogenic mutations in AML, as well as to describe clonal evolution of the disease (including the evaluation of genotype at disease relapse).
4. To describe the clinical outcome of IDH1/2 mutated patients with AML treated with currently available treatments.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Acute Myeloid Leukemia IDH1 Gene Mutation IDH2 Gene Mutation

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

IDH1-mutated AML

Patients affected with AML and carryng IDH1 mutations

No interventions assigned to this group

IDH2-mutated AML

Patients affected with AML and carryng IDH2 mutations

No interventions assigned to this group

IDH1/2 unmutated AML

Patients affected with AML without IDH1/2 mutations

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Age ≥ 18 years
* Diagnosis of AML According to 2016 WHO classification criteria
* Ability to give informed consent according to ICH/EU GCP, and national/local regulations.

Exclusion Criteria

* Lack of written informed consent
* Lack of biological samples (blood, bone marrow aspirate)
Minimum Eligible Age

18 Years

Maximum Eligible Age

90 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Celgene

INDUSTRY

Sponsor Role collaborator

Istituto Clinico Humanitas

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Francesc Sole, MD

Role: PRINCIPAL_INVESTIGATOR

Josep Carreras Leukaemia Research Institute

Joana Desterro

Role: PRINCIPAL_INVESTIGATOR

Instituto Português de Oncologia de Lisboa

Klaus Metzeler

Role: PRINCIPAL_INVESTIGATOR

Laboratory for Leukemia Diagnostics. University of Munich

Pau Montesinos

Role: PRINCIPAL_INVESTIGATOR

Hematology Department. Hospital Universitari i Politècnic La Fe

Jorge Sierra

Role: PRINCIPAL_INVESTIGATOR

Hospital de la Santa Creu i Sant Pau Autonomous University of Barcelona, Spain

Matteo Della Porta, MD

Role: STUDY_CHAIR

Humanitas Research Hospital IRCCS, Rozzano-Milan

Maria Teresa Voso

Role: PRINCIPAL_INVESTIGATOR

Fondazione GIMEMA

Christoph Roellig

Role: PRINCIPAL_INVESTIGATOR

Technische Universität Dresden | TUD · Medical Clinic

Lisa Pleyer

Role: PRINCIPAL_INVESTIGATOR

Salzburg Cancer Reasearch Institute (SCRI), Cancer Cluster Salzburg (CCS)

Moritz Middeke

Role: PRINCIPAL_INVESTIGATOR

Technische Universität Dresden | TUD · Medical Clinic

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Istituto Clinico Humanitas

Milan, , Italy

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Italy

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Matteo Della Porta, MD

Role: CONTACT

+390282247668 ext. +39

Marilena Bicchieri, PhD

Role: CONTACT

+390282247668 ext. +39

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Marilena Bicchieri, PhD

Role: primary

+390282247668 ext. +39

References

Explore related publications, articles, or registry entries linked to this study.

Larsson CA, Cote G, Quintas-Cardama A. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res. 2013 Aug;11(8):815-27. doi: 10.1158/1541-7786.MCR-12-0695. Epub 2013 May 3.

Reference Type RESULT
PMID: 23645565 (View on PubMed)

Chou WC, Lei WC, Ko BS, Hou HA, Chen CY, Tang JL, Yao M, Tsay W, Wu SJ, Huang SY, Hsu SC, Chen YC, Chang YC, Kuo KT, Lee FY, Liu MC, Liu CW, Tseng MH, Huang CF, Tien HF. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia. 2011 Feb;25(2):246-53. doi: 10.1038/leu.2010.267. Epub 2010 Nov 16.

Reference Type RESULT
PMID: 21079611 (View on PubMed)

DiNardo CD, Ravandi F, Agresta S, Konopleva M, Takahashi K, Kadia T, Routbort M, Patel KP, Mark Brandt, Pierce S, Garcia-Manero G, Cortes J, Kantarjian H. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015 Aug;90(8):732-6. doi: 10.1002/ajh.24072.

Reference Type RESULT
PMID: 26016821 (View on PubMed)

Thol F, Damm F, Wagner K, Gohring G, Schlegelberger B, Hoelzer D, Lubbert M, Heit W, Kanz L, Schlimok G, Raghavachar A, Fiedler W, Kirchner H, Heil G, Heuser M, Krauter J, Ganser A. Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood. 2010 Jul 29;116(4):614-6. doi: 10.1182/blood-2010-03-272146. Epub 2010 Apr 26.

Reference Type RESULT
PMID: 20421455 (View on PubMed)

Cancer Genome Atlas Research Network; Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, Hoadley K, Triche TJ Jr, Laird PW, Baty JD, Fulton LL, Fulton R, Heath SE, Kalicki-Veizer J, Kandoth C, Klco JM, Koboldt DC, Kanchi KL, Kulkarni S, Lamprecht TL, Larson DE, Lin L, Lu C, McLellan MD, McMichael JF, Payton J, Schmidt H, Spencer DH, Tomasson MH, Wallis JW, Wartman LD, Watson MA, Welch J, Wendl MC, Ally A, Balasundaram M, Birol I, Butterfield Y, Chiu R, Chu A, Chuah E, Chun HJ, Corbett R, Dhalla N, Guin R, He A, Hirst C, Hirst M, Holt RA, Jones S, Karsan A, Lee D, Li HI, Marra MA, Mayo M, Moore RA, Mungall K, Parker J, Pleasance E, Plettner P, Schein J, Stoll D, Swanson L, Tam A, Thiessen N, Varhol R, Wye N, Zhao Y, Gabriel S, Getz G, Sougnez C, Zou L, Leiserson MD, Vandin F, Wu HT, Applebaum F, Baylin SB, Akbani R, Broom BM, Chen K, Motter TC, Nguyen K, Weinstein JN, Zhang N, Ferguson ML, Adams C, Black A, Bowen J, Gastier-Foster J, Grossman T, Lichtenberg T, Wise L, Davidsen T, Demchok JA, Shaw KR, Sheth M, Sofia HJ, Yang L, Downing JR, Eley G. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 May 30;368(22):2059-74. doi: 10.1056/NEJMoa1301689. Epub 2013 May 1.

Reference Type RESULT
PMID: 23634996 (View on PubMed)

Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC, Pellagatti A, Shlien A, Groves MJ, Forbes SA, Raine K, Hinton J, Mudie LJ, McLaren S, Hardy C, Latimer C, Della Porta MG, O'Meara S, Ambaglio I, Galli A, Butler AP, Walldin G, Teague JW, Quek L, Sternberg A, Gambacorti-Passerini C, Cross NC, Green AR, Boultwood J, Vyas P, Hellstrom-Lindberg E, Bowen D, Cazzola M, Stratton MR, Campbell PJ; Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013 Nov 21;122(22):3616-27; quiz 3699. doi: 10.1182/blood-2013-08-518886. Epub 2013 Sep 12.

Reference Type RESULT
PMID: 24030381 (View on PubMed)

Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010 Mar 16;17(3):225-34. doi: 10.1016/j.ccr.2010.01.020. Epub 2010 Feb 18.

Reference Type RESULT
PMID: 20171147 (View on PubMed)

Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, Dang L, Fantin VR, Mak TW. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010 Feb 15;207(2):339-44. doi: 10.1084/jem.20092506. Epub 2010 Feb 8.

Reference Type RESULT
PMID: 20142433 (View on PubMed)

DiNardo CD, Propert KJ, Loren AW, Paietta E, Sun Z, Levine RL, Straley KS, Yen K, Patel JP, Agresta S, Abdel-Wahab O, Perl AE, Litzow MR, Rowe JM, Lazarus HM, Fernandez HF, Margolis DJ, Tallman MS, Luger SM, Carroll M. Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood. 2013 Jun 13;121(24):4917-24. doi: 10.1182/blood-2013-03-493197. Epub 2013 May 2.

Reference Type RESULT
PMID: 23641016 (View on PubMed)

Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010 Dec 14;18(6):553-67. doi: 10.1016/j.ccr.2010.11.015. Epub 2010 Dec 9.

Reference Type RESULT
PMID: 21130701 (View on PubMed)

Ye D, Xiong Y, Guan KL. The mechanisms of IDH mutations in tumorigenesis. Cell Res. 2012 Jul;22(7):1102-4. doi: 10.1038/cr.2012.51. Epub 2012 Mar 27.

Reference Type RESULT
PMID: 22453240 (View on PubMed)

Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E, Straley K, Kernytsky A, Liu W, Gliser C, Yang H, Gross S, Artin E, Saada V, Mylonas E, Quivoron C, Popovici-Muller J, Saunders JO, Salituro FG, Yan S, Murray S, Wei W, Gao Y, Dang L, Dorsch M, Agresta S, Schenkein DP, Biller SA, Su SM, de Botton S, Yen KE. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013 May 3;340(6132):622-6. doi: 10.1126/science.1234769. Epub 2013 Apr 4.

Reference Type RESULT
PMID: 23558173 (View on PubMed)

Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG Jr. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013 Mar 29;339(6127):1621-5. doi: 10.1126/science.1231677. Epub 2013 Feb 7.

Reference Type RESULT
PMID: 23393090 (View on PubMed)

Della Porta MG, Travaglino E, Boveri E, Ponzoni M, Malcovati L, Papaemmanuil E, Rigolin GM, Pascutto C, Croci G, Gianelli U, Milani R, Ambaglio I, Elena C, Ubezio M, Da Via' MC, Bono E, Pietra D, Quaglia F, Bastia R, Ferretti V, Cuneo A, Morra E, Campbell PJ, Orazi A, Invernizzi R, Cazzola M; Rete Ematologica Lombarda (REL) Clinical Network. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia. 2015 Jan;29(1):66-75. doi: 10.1038/leu.2014.161. Epub 2014 May 20.

Reference Type RESULT
PMID: 24935723 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

ONC/OSS-04/2016

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.