Tumor Hypoxia and Proliferation in Patients With High-Grade Glioma

NCT ID: NCT04309552

Last Updated: 2026-01-27

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

SUSPENDED

Clinical Phase

PHASE1

Total Enrollment

8 participants

Study Classification

INTERVENTIONAL

Study Start Date

2021-02-01

Study Completion Date

2027-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This is a pilot study to assess a new methodology developed for High Grade Glioma (HGG). FMISO PET (Fluoromisonidazole-PET) allows researchers to study whether tumor cells lack oxygen (hypoxia). FLT PET (Fluorodeoxythymidine-PET) allows researchers to study the increase in the number of cells as a result of cell growth and cell division (proliferation). Tumors that have low oxygen levels and/or are dividing fast shall resist to standard cancer treatment. The study will compare FMISO PET and FLT PET imaging techniques with molecular biomarkers of hypoxia, angiogenesis, and cellular proliferation in tissue. proliferation).This information could help researchers develop new treatment techniques to better treat cancer.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This is a pilot study to assess a novel methodology recently developed to simultaneously image tumor hypoxia and proliferation by means of simultaneous FMISO and FLT PET acquisition. FMISO (18F-Fluoromisonidazole) PET is a non-invasive method for detecting tumor hypoxia in solid tumors. FLT (3'-deoxy-3'\[(18)F\]-fluorothymidine) PET is a non-invasive method to image Cell proliferation rate. Imaging of tumor hypoxia and proliferation with FMISO and FLT PET respectively are two very well established techniques in in high-grade glioma. The long-term goal of this proposal is to establish clinically robust methodology to simultaneously image multiple tumor hallmarks. The central hypothesis is that combined information from multiple tumor hallmarks will offer complementary information about the underlying physiological processes, and will yield synergistic prognostic and predictive values. The rationale is that these findings will enhance the understanding of the underlying biology and pathophysiology, and will open new therapeutic strategies to target radioresistant and highly aggressive regions within the tumor, as well as aiding in the development of imaging theragnostics. The method used in this proposal is based on our previous work on simultaneous imaging of FMISO/FLT PET, and is facilitated by prior knowledge of the tissue pharmacokinetics, and an ability to distinguish the two radiotracers fractions in blood by thin-layer chromatography (TLC). The study will compare FMISO and FLT imaging findings with those from molecular biomarkers of hypoxia, angiogenesis, and cellular proliferation in tissue.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Glioma

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Single center, prospective, non-randomized trial of 30 newly diagnosed patients with suspected HGG undergoing surgical planning will be enrolled to undergo combined FMISO/FLT PET at baseline. Blood samples will be drawn during PET acquisition. Preoperatively FMISO/FLT PET data will be used for intraoperative neuro-navigation and targeted sampling of PET avid tumor subregions prior to tumor excision. Paraffin blocks will be analyzed with immuno-histochemistry and in situ hybridization. Longitudinal clinical data will be collected from the medical record for standard of care visits to the oncology and surgical clinics. Imaging data from research scans will be correlated with time to progression, progression-free survival at 9 months, and overall survival (OS) at 1 year post baseline assessment.
Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

High Grade Glioma (HGG)

Thirty newly diagnosed treatment-naïve subjects with suspected HGG based on clinical presentation and MRI findings and undergoing surgical planning will be accrued in this study.

Group Type EXPERIMENTAL

18F-FMISO PET

Intervention Type DRUG

Suspected HGG subjects will undergo combined FMISO/FLT dyn-PET at baseline as part of surgical planning. Dyn-PET images will be acquired with staggered FMISO/FLT injections using a lag time of 50 minutes. Preoperatively FMISO/FLT dyn-PET data will be used for intraoperative neuro-navigation and targeted sampling of PET avid tumor subregions prior to tumor excision. Paraffin blocks will be analyzed with immuno-histochemistry and in situ hybridization for HIF-1α, Ki-67, VEGF, EGFR, IDH, and pimonidazole, as well as TERT. FMISO-PET uptake rate, k3, (surrogate for hypoxia) and FLT-PET influx rate, Ki (surrogate for proliferation) will be correlated with time to progression, progression-free survival at 9 months, and overall survival (OS) at 1 year.

18F-FLT PET

Intervention Type DRUG

Suspected HGG subjects will undergo combined FMISO/FLT dyn-PET at baseline as part of surgical planning. Dyn-PET images will be acquired with staggered FMISO/FLT injections using a lag time of 50 minutes. Preoperatively FMISO/FLT dyn-PET data will be used for intraoperative neuro-navigation and targeted sampling of PET avid tumor subregions prior to tumor excision. Paraffin blocks will be analyzed with immuno-histochemistry and in situ hybridization for HIF-1α, Ki-67, VEGF, EGFR, IDH, and pimonidazole, as well as TERT. FMISO-PET uptake rate, k3, (surrogate for hypoxia) and FLT-PET influx rate, Ki (surrogate for proliferation) will be correlated with time to progression, progression-free survival at 9 months, and overall survival (OS) at 1 year.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

18F-FMISO PET

Suspected HGG subjects will undergo combined FMISO/FLT dyn-PET at baseline as part of surgical planning. Dyn-PET images will be acquired with staggered FMISO/FLT injections using a lag time of 50 minutes. Preoperatively FMISO/FLT dyn-PET data will be used for intraoperative neuro-navigation and targeted sampling of PET avid tumor subregions prior to tumor excision. Paraffin blocks will be analyzed with immuno-histochemistry and in situ hybridization for HIF-1α, Ki-67, VEGF, EGFR, IDH, and pimonidazole, as well as TERT. FMISO-PET uptake rate, k3, (surrogate for hypoxia) and FLT-PET influx rate, Ki (surrogate for proliferation) will be correlated with time to progression, progression-free survival at 9 months, and overall survival (OS) at 1 year.

Intervention Type DRUG

18F-FLT PET

Suspected HGG subjects will undergo combined FMISO/FLT dyn-PET at baseline as part of surgical planning. Dyn-PET images will be acquired with staggered FMISO/FLT injections using a lag time of 50 minutes. Preoperatively FMISO/FLT dyn-PET data will be used for intraoperative neuro-navigation and targeted sampling of PET avid tumor subregions prior to tumor excision. Paraffin blocks will be analyzed with immuno-histochemistry and in situ hybridization for HIF-1α, Ki-67, VEGF, EGFR, IDH, and pimonidazole, as well as TERT. FMISO-PET uptake rate, k3, (surrogate for hypoxia) and FLT-PET influx rate, Ki (surrogate for proliferation) will be correlated with time to progression, progression-free survival at 9 months, and overall survival (OS) at 1 year.

Intervention Type DRUG

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

18F-Fluoromisonidazole 3'-deoxy- 3'[(18)F]-fluorothymidine

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Male or female ≥ 18 years of age
* Documentation of a suspected HGG diagnosis based on clinical and MRI findings

Exclusion Criteria

* Pregnant or breastfeeding
* Contraindications to receiving Positron Emission Tomography (PET) imaging (e.g. claustrophobia)
Minimum Eligible Age

18 Years

Maximum Eligible Age

100 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

William Rhodes Center for Glioblastoma

UNKNOWN

Sponsor Role collaborator

Weill Medical College of Cornell University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Sadek Nehmeh, PhD

Role: PRINCIPAL_INVESTIGATOR

Weill Medical College of Cornell University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Weill Cornell Medical College

New York, New York, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

20-02021553

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Feasibility of FMISO in Brain Tumors
NCT03649880 RECRUITING PHASE2
PET and MRI Imaging of Brain Tumors Using [18F]PARPi
NCT04173104 ACTIVE_NOT_RECRUITING EARLY_PHASE1