Visualising Cerebral and Peripheral Cholinergic Nerves in Patients With Dementia Lewy Bodies.

NCT ID: NCT04291144

Last Updated: 2023-05-22

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

40 participants

Study Classification

OBSERVATIONAL

Study Start Date

2020-02-01

Study Completion Date

2023-03-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Lewy Body Dementia (DLB) is the second most common type of neurodegenerative dementia and characterized by loss of cholinergic neurons in the cerebrum and possibly also internal organs. A novel tracer, 18F-fluoroethoxybenzovesamicol (18F-FEOBV), binds to the cholinergic vesicle transporter, a protein expressed uniquely in the vesicles of cholinergic pre-synapses. Our aim is to investigate the cholinergic denervation in patients with DLB using 18F-FEOBV. The investigators plan to recruit 30 patients with DLB and 20 healthy controls to extensive cognitive assessment, computed and positron emission topography, magnetic resonance imaging, and samples of blood. The investigators hypothesize that patients with DLB, compared to controls, have decreased cholinergic innervation in cortical and subcortical areas of the brain, intestines and heart, and that the denervation corresponds to symptoms of autonomic and cognitive dysfunction.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Dementia with Lewy Bodies (DLB) is the second most common type of neurodegenerative dementia after Alzheimer's disease. It is characterized by cognitive decline, cognitive fluctuations, visual hallucinations, parkinsonism, and sleep disturbances. There is evidence of cholinergic neuron loss in the cerebrum of DLB patients, and Lewy body pathology in the cholinergic parasympathetic nerves of internal organs. A novel tracer, 18F-fluoroethoxybenzovesamicol (18F-FEOBV), binds to the cholinergic vesicle transporter, a protein expressed uniquely in the vesicles of cholinergic pre-synapses, and therefore a very specific marker for cholinergic innervation. There is only one previous FEOBV publication in DLB (4 patients). That study showed impressive imaging quality, far better than earlier cholinergic PET-ligands, such as 11C-donepezil. Per Borghammer has pioneered the use of 11C-donepezil PET to visualize cholinergic loss, and 18F-FEOBV PET represents the next generation of high-resolution cholinergic imaging. The aim is to investigate the cholinergic denervation in patients with DLB using 18F-FEOBV. The investigators hypothesize that, compared to healthy elderly controls, patients with DLB show: (i) Cholinergic denervation in cortical and subcortical structures of the brain, and in peripheral organs, specifically the gut, pancreas, and heart. (ii) Correlations between cerebral cholinergic denervation and cognitive decline, assessed with neuropsychometric measures. (iii) Correlations between cholinergic denervation of internal organs and relevant symptoms of autonomic dysfunction, e.g. orthostatic hypotension and constipation, and with objective measures of autonomic malfunction, e.g. increased colonic transit time, increased intestinal volume, and reduced heart rate variability. (iv) Thinning of the vagal nerve detected by ultra sound. (v) Correlations between cerebral cholinergic denervation and perturbed neural networks measured by functional MRI. Secondary aims are to compare the cerebral uptake of 18F-FEOBV in DLB patients with/without markers of Alzheimer's Disease in the cerebrospinal fluid, relate the pattern of glucose uptake (18F-2-fluoro-2-deoxy-D-glucose fluorodeoxyglucose, 18F-FDG PET) to that of 18F-FEOBV uptake in the cerebrum, and contribute to development of a diagnostic alpha-synuclein assay.

The investigators plan to include 25-30 DLB patients and 20 matched healthy elderly controls. Patients are recruited from the dementia clinic, Aarhus University. Inclusion criteria are mild to moderate DLB, ability to give informed consent, and typical signs of DLB on an 18F-FDG-PET scan. Exclusion criteria are major psychiatric, neurologic and medical comorbidities. The investigators will do a clinical assessment including full somatic and neurological examinations, an extensive neuropsychological cognitive assessment, assess autonomic symptoms and evaluate for sleep disorders, test for orthostatic hypotension and heart rate variability and colonic transit time. The investigators will inject 300 megabecquerel (MBq) of 18F-FEOBV in a peripheral vein and scan the internal organs from 0-70 minutes. The patient then rests, and from 180-210 minutes post-injection, the brain is imaged. This two-step method has been validated to give a robust estimate of the cholinergic innervation of the brain. The investigators will also do magnetic resonance imaging of the brain, ultrasound of vagal nerve, cerebrospinal fluid analysis and blood work. The investigators plan to write a manuscript describing the cerebral uptake of 18F-FEOBV as measure of cholinergic denervation of patients with DLB. A second manuscript will describe the uptake of 18F-FEOBV in the internal organs. A third manuscript will compare the cholinergic denervation of brain and organs to cognitive and autonomic symptoms. NO will participate in recruitment of patients, drafting of protocol and manuscripts, organizing logistics, analysis of data, and collecting clinical and paraclinical data. The investigators will pay particular attention the ethical issues of obtaining informed consent from demented persons and emphasize an evaluation of competence. The investigators expect that this method is better than the currently used 11C-donepezil, in which case it will replace its use for studies of cholinergic denervation in the future. Developing non-invasive PET imaging of short duration is particularly important in a demented patient population that often struggle to lie still during prolonged scanning sessions. Development of strong objective measures to aid diagnosis of DLB is important because DLB is a common disease projected to increase even further in prevalence in the years to come. Also, our side project of contributing to the development of a prion-assay to detect alpha-synuclein in the cerebrospinal fluid has promising clinical potential.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Dementia With Lewy Bodies Degeneration Nerves Positron-Emission Tomography Acetylcholine

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

CROSS_SECTIONAL

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Patients

Inclusion criteria are mild to moderate DLB, age above 50, ability to give informed consent.

PET-CT using FEOBV

Intervention Type RADIATION

We will inject 300 MBq of 18F-FEOBV in a peripheral vein and scan the internal organs from (0-70 minutes). The patient then rests, and from 180-210min after injection, we will scan the brain on our Siemens High Resolution Research Tomograph.

MRI-scan

Intervention Type RADIATION

All patients will have an MRI scan of the brain. T1-weighted images will be used to assess general anatomy and identify white matter. T2-weighted sequences will be performed to quantify competing brain pathology. Also, we will collect functional MRI data.

Cognitive assessment

Intervention Type DIAGNOSTIC_TEST

Full neuropsychometric examination including tests in 5 cognitive domains.

Clinical assessment

Intervention Type DIAGNOSTIC_TEST

Age, sex, duration of disease, patient history and full somatic and neurological examinations. Constipation assessed with Rome-III criteria. Evaluation of Rapid Eye Movement (REM) sleep Behaviour Disorder (RBDSQ) questionnaire. Test for orthostatic hypotension, heart rate variability, and deep breathing.

Healthy controls

Age above 50.

PET-CT using FEOBV

Intervention Type RADIATION

We will inject 300 MBq of 18F-FEOBV in a peripheral vein and scan the internal organs from (0-70 minutes). The patient then rests, and from 180-210min after injection, we will scan the brain on our Siemens High Resolution Research Tomograph.

MRI-scan

Intervention Type RADIATION

All patients will have an MRI scan of the brain. T1-weighted images will be used to assess general anatomy and identify white matter. T2-weighted sequences will be performed to quantify competing brain pathology. Also, we will collect functional MRI data.

Cognitive assessment

Intervention Type DIAGNOSTIC_TEST

Full neuropsychometric examination including tests in 5 cognitive domains.

Clinical assessment

Intervention Type DIAGNOSTIC_TEST

Age, sex, duration of disease, patient history and full somatic and neurological examinations. Constipation assessed with Rome-III criteria. Evaluation of Rapid Eye Movement (REM) sleep Behaviour Disorder (RBDSQ) questionnaire. Test for orthostatic hypotension, heart rate variability, and deep breathing.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

PET-CT using FEOBV

We will inject 300 MBq of 18F-FEOBV in a peripheral vein and scan the internal organs from (0-70 minutes). The patient then rests, and from 180-210min after injection, we will scan the brain on our Siemens High Resolution Research Tomograph.

Intervention Type RADIATION

MRI-scan

All patients will have an MRI scan of the brain. T1-weighted images will be used to assess general anatomy and identify white matter. T2-weighted sequences will be performed to quantify competing brain pathology. Also, we will collect functional MRI data.

Intervention Type RADIATION

Cognitive assessment

Full neuropsychometric examination including tests in 5 cognitive domains.

Intervention Type DIAGNOSTIC_TEST

Clinical assessment

Age, sex, duration of disease, patient history and full somatic and neurological examinations. Constipation assessed with Rome-III criteria. Evaluation of Rapid Eye Movement (REM) sleep Behaviour Disorder (RBDSQ) questionnaire. Test for orthostatic hypotension, heart rate variability, and deep breathing.

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* mild to moderate DLB, ability to give informed consent, and typical signs of DLB on an FDG-PET or dopamine transporter (DaT)-scan

Exclusion Criteria

* schizophrenia, bipolar disorder, cerebral neoplasms, clinical stroke, diabetes, peripheral neuropathy, previous surgery or radiotherapy on cerebrum or internal organs, gastrointestinal inflammatory disease, severe organ failure, allergy to CT-contrast media and contraindications to MRI-scans
Minimum Eligible Age

50 Years

Maximum Eligible Age

85 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Aarhus

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Per Borghammer, MD, DMSc

Role: STUDY_CHAIR

University of Aarhus

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Department of Nuclear medicine and PET, Aarhus University Hospital

Aarhus N, , Denmark

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Denmark

References

Explore related publications, articles, or registry entries linked to this study.

Nejad-Davarani S, Koeppe RA, Albin RL, Frey KA, Muller MLTM, Bohnen NI. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [18F]-FEOBV. Mol Psychiatry. 2019 Mar;24(3):322-327. doi: 10.1038/s41380-018-0130-5. Epub 2018 Aug 6. No abstract available.

Reference Type BACKGROUND
PMID: 30082840 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

DLB-FEOBV

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.