Characterization of New Candidate Genes in Cases of Human Inherited Thrombocytopenia (CATCH)
NCT ID: NCT04272970
Last Updated: 2024-07-30
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
12 participants
INTERVENTIONAL
2020-07-07
2024-03-21
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
* an evaluation of how blood progenitor cells mature into MKs, by comparing cells obtained from patients to those of members free of the disease (the latter taken as normal control subjects);
* an evaluation of platelet functionalities, such as ability to form a blood clot similar to what happens during hemostasis, with the aim to detect not only quantitative (number and size) but also any qualitative (functions) defects;
* an evaluation of the ultrastructure (the structure of intracellular components) and biochemistry of MKs and platelets, focusing on the molecular pathways the variant protein is implicated in.
This clinical trial is aimed to precisely delineate the mechanism of action of newly identified CT genetic variants, and will fulfill the aims of (1) offering the patient(s) a formal molecular diagnosis of CT, (2) ameliorating patients' medical support, both for diagnosis and therapy, (3) providing patients and family members with a pertinent genetic counseling, and (4) expanding the validated panel of genes implicated in CT to be explored in new suspected cases of CT. It will also help in extending the basic knowledge of the process of MK and platelet formation.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Collection of Peripheral Blood From Patients With Hematologic Malignancies With Thrombocytopenia
NCT06824727
Unravelling the Role of Apoptosis in Platelets Biogenesis Through the Study of the Thrombocytopenia THC4
NCT07026578
Study of Constitutional Platelet Disease
NCT04419987
Idiopathic Chronic Thrombocytopenia of Undetermined Significance : Pathogenesis and Biomarker
NCT04003220
Lusutrombopag in the Treatment of Immune Thrombocytopenia (ITP)
NCT06287567
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Knowledge about the genetic basis of CT is continuously expanding, with \~ 40 genes identified so far as causative in CT cases. This identification is based on rigorous criteria such as (1) bioinformatics-based evaluation of the pathogenicity of the mutations, (2) genotype - phenotype association in informative CT families, and (3) reproduction of the molecular and cellular abnormalities noted in the patients by using experimental cellular or animal models. All implicated genes and proteins act at important steps during MK differentiation / maturation, and particularly during thrombopoiesis. In addition to important biomedical outcomes, characterization of mutations of these genes and the impact they have on various biological processes is also an irreplaceable source of discoveries in basic cell biology. However, in about half of clinically suspected CT cases, genomic analysis of the known implicated genes does not recover a variant in one of these genes. Thus, some etiologies of CT are yet unknown, and there is still a lot of investigation to perform in order to expand and complement the list of genes and mutations implicated in CT. This is important for the patients and families, because insuring the diagnosis of CT will avoid misdiagnosis and its potential inefficient or deleterious therapeutic interventions, including blood products transfusion when non pertinent, while allowing a proposal of an adapted curative/preventive medical action, especially when the CT is associated with an extra-platelet or extra-hematological syndrome.
At the Resource and Competence Center for Constitutional Hemorrhagic Diseases (CRCMHC; University Hospital Robert Debré, Paris, France), the investigating team has built a cohort of more than 650 subjects presenting with CT, which only about half have received a genetic diagnosis. Among the patients without such a molecular diagnosis, several, unrelated patients with a familial form of thrombocytopenia have been recently investigated by the investigating team and shown to harbor variants of genes not yet described as formally implicated in the occurrence of CT. However, clinical and molecular genetic evidence must be completed by functional studies of the corresponding variant proteins in their cellular environment, and this experimental, cell biology approach of the CT pathology makes the basis of the present clinical trial. Such functional studies will include:
* an evaluation of how blood HPC obtained from patients and family members either with CT or free of the disease (the latter taken as normal control subjects), differentiate into MKs when seeded in culture dishes, then mature into MKs forming proplatelets, that are similar to the early platelets formed in the bone marrow before their release into blood. The purpose is to observe and analyze any morphological and protein expression abnormality that may be present in CT cells, and absent in non-CT cells. The techniques used are cell culture, microscope observation and analysis, both qualitative and quantitative, of modifications in protein expression and / or distribution in cells, using probes such as antibodies raised against the proteins of interest;
* an evaluation of platelet functionalities, such as their ability to adhere to the surface of a blood vessel, then to aggregate, an hallmark of their essential role in stopping bleeding, and to retract a clot, characteristic of their role in the sealing of a damaged blood vessel, thereby avoiding infections and preparing the tissue for repair. The aim here is to observe and analyze any alteration of these highly platelet-specific functions during hemostasis in CT platelets compared to normal platelets, because certain genes affecting the platelet production in the bone marrow may also play a role in the functions of circulating platelets. Techniques to be used are microscopy imaging of platelet adherence to experimental protein-coated surfaces, or to genuine vascular material;
* an evaluation of the MK/platelet ultrastructure and biochemistry, focusing on the intracellular molecular pathways the variant protein is implicated in. Techniques to use for this purpose are confocal or electronic microscopy, protein extraction, purification and analysis.
These experimental studies are conducted in a research laboratory from the National Institute for Health and Medical Research (Inserm), "Innovative Therapies in Haemostasis (IThEM)" (Faculty of Pharmacy - University of Paris, Paris, France). The laboratory is acting in this clinical trial on a collaborative basis with the CRCMHC, which is operating upstream for the medical, clinical and genetic characterization of patients and family members who may be then asked for enrollment in the trial. The IThEM laboratory has also the expertise to generate cellular models for the study of one particular gene and protein variant, that can be experimentally introduced into laboratory human primary cells or cell lines in order to reproduce the biologic alterations originally observed in cells from the CT patients. This serves to strengthen the demonstration that the variant gene is truly pathogenic, but this part of the study is outside the present clinical trial because it does not require access to biological material from the patients and family members in order to be performed.
In the whole, this clinical trial is aimed to precisely delineate the mechanism of action at the molecular and cellular levels of newly identified CT-associated gene variants, in order to confirm or, conversely, invalidate the pathogenicity of the variant gene. It will fulfill several objectives, (1) to offer the patient(s) a formal molecular diagnosis of CT, (2) to precise and elucidate the phenotypic presentation of the form of CT generated by this variant, (3) to help to ameliorate patients' medical support, both for diagnosis and therapy, particularly if CT have extra-platelet and / or extra-hematological counterparts, (4) to provide patients and family members a pertinent genetic counseling, and (5) to expand the validated panel of genes implicated in CT and to be explored on presentation of a new suspected case of CT. It will also help in extending the basic knowledge of the process of megakaryocytopoiesis and thrombopoiesis, both normal and pathological.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
DIAGNOSTIC
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
New gene / protein variant functional study
Morphological and functional studies of circulating blood platelets and hematopoietic progenitor cells, in order to prove the pathogenicity of variants of new genes potentially involved in constitutional familial thrombocytopenia.
Validation of a new gene / protein variant implicated in familial CT
Realize a blood sample to perform functional studies of circulating blood platelets and hematopoietic progenitor cells, in order to prove the pathogenicity of variants of new genes potentially involved in constitutional thrombocytopenia.
Normal gene / protein variant functional study
Morphological and functional studies of circulating blood platelets and hematopoietic progenitor cells, in order to provide control observations / analyses / measures for the "Active Comparator" arm
Validation of a new gene / protein variant implicated in familial CT
Realize a blood sample to perform functional studies of circulating blood platelets and hematopoietic progenitor cells, in order to prove the pathogenicity of variants of new genes potentially involved in constitutional thrombocytopenia.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Validation of a new gene / protein variant implicated in familial CT
Realize a blood sample to perform functional studies of circulating blood platelets and hematopoietic progenitor cells, in order to prove the pathogenicity of variants of new genes potentially involved in constitutional thrombocytopenia.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* thrombocytopenia in at least one family member
* weight \> 35 kg
* no pathogenic variant (already reported or suspected) in genes causative for inherited CT
* harboring a variant potentially pathogenic in a gene potentially implicated in the megakaryopoiesis or platelet production, this variant being harbored also by the affected family members, and not by the non-affected family members .
Exclusion Criteria
* Subject with an anemia: Hb \< 8g/dl
* Subject with a behavior disorder
* Subject with a hemostasis disease added (Willebrand disease, hemophilia, ...)
* Subject with another suspected cause of thrombopenia (drug, infection, ...)
* Subject taking a drug interfering on the platelet production
* Subject protected by a legal measure
* Subject participating to another program research, leading to larger blood volume than authorized
11 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Institut National de la Santé Et de la Recherche Médicale, France
OTHER_GOV
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Marie-Françoise Hurtaud-Roux, MD
Role: PRINCIPAL_INVESTIGATOR
Assistance Publique - Hôpitaux de Paris (AP-HP)
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Resource and Competence Center for Constitutional Hemorrhagic Diseases (CRCMHC), University Hospital Robert Debré
Paris, , France
Resource and Competence Center for Constitutional Hemorrhagic Diseases (CRCMHC), University Hospital Pontchaillou
Rennes, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Vincenot A, Saultier P, Kunishima S, Poggi M, Hurtaud-Roux MF, Roussel A, Actn Study Coinvestigators, Schlegel N, Alessi MC. Novel ACTN1 variants in cases of thrombocytopenia. Hum Mutat. 2019 Dec;40(12):2258-2269. doi: 10.1002/humu.23840. Epub 2019 Nov 6.
Boutroux H, David B, Gueguen P, Frange P, Vincenot A, Leverger G, Favier R. ACTN1-related Macrothrombocytopenia: A Novel Entity in the Progressing Field of Pediatric Thrombocytopenia. J Pediatr Hematol Oncol. 2017 Nov;39(8):e515-e518. doi: 10.1097/MPH.0000000000000885.
Guillet B, Bayart S, Pillois X, Nurden P, Caen JP, Nurden AT. A Glanzmann thrombasthenia family associated with a TUBB1-related macrothrombocytopenia. J Thromb Haemost. 2019 Dec;17(12):2211-2215. doi: 10.1111/jth.14622. Epub 2019 Sep 29.
Balduini CL, Melazzini F, Pecci A. Inherited thrombocytopenias-recent advances in clinical and molecular aspects. Platelets. 2017 Jan;28(1):3-13. doi: 10.3109/09537104.2016.1171835. Epub 2016 May 9.
Related Links
Access external resources that provide additional context or updates about the study.
Website of the Inserm U1140 laboratory "Innovative Therapeutics in Hemostasis"
Website of the rare diseases health chain "Mhemo" (meaning haemorrhagic diseases), which includes the CRCMHC
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2019-A01351-56
Identifier Type: REGISTRY
Identifier Source: secondary_id
C19-08
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.