Identification of Patients Admitted With COPD Exacerbations and Predicting Readmission Risk Using Machine Learning

NCT ID: NCT04192175

Last Updated: 2025-01-27

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

65000 participants

Study Classification

OBSERVATIONAL

Study Start Date

2019-06-01

Study Completion Date

2023-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Patients with Chronic Obstructive Pulmonary Disease (COPD) who are admitted to hospital are at high risk of readmission. While therapies have improved and there are evidence-based guidelines to reduce readmissions, there are significant challenges to implementation including 1) identifying all patients with COPD early in admission to ensure evidence-based, high value care is provided and 2) identifying those who are at high risk of readmission in order to effectively target resources.

Using machine learning and natural language processing, we want to develop models to 1) identify all patients with COPD exacerbations admitted to hospital and 2) stratify them to distinguish those who are at high risk of readmission b) How will you undertake your work? From Toronto hospitals, we will develop a very large dataset of patient admissions for all medical conditions including exacerbations of COPD from the electronic health record. This data will include both structured data such as age, gender, medications, laboratory values, co-morbidities as well as unstructured data such as discharge summaries and physician notes.

Using the dataset, we will train a model through natural language processing and machine learning to be able to identify people admitted with COPD exacerbation and identify those patients who will be at high risk of readmission within 30 days. We will test the ability of these models to determine our predictive accuracies. We will then test these models at other institutions.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

One fifth of patients discharged from hospital for COPD exacerbations are readmitted within 30 days.(1, 3, 4) While therapies and care guidelines have improved, guideline implementation remains poor.(5) Implementing appropriate standards through usual hospital workflow presents significant challenges. One of the top challenges is ensuring all eligible patients with COPD exacerbations are identified in a timely manner.(6) Another top challenge is that staff are often too busy and do not have time to execute evidence-based practices that reduce readmissions.(6) Furthermore, intensive case management can not be offered to everyone because of limited resources. Therefore, it is important that we are able to identify both people who are admitted with COPD early as well as those who are at high risk for readmission.

COPD exacerbations may, at times, not be easily recognized at first and take days to become apparent. Symptoms of exacerbations such as shortness of breath are not specific and signs such as chest radiograph infiltrates can be due to one or more diagnoses. Furthermore, COPD exacerbations can trigger or be triggered by other diseases. As a result, it is not uncommon for admitting physicians to admit patients with multiple provisional diagnoses of heart failure, pneumonia, COPD exacerbation and more. Distinguishing people with COPD exacerbations is further confounded by Electronic Health Records (EHRs) that do not have diagnoses listed as coded elements. The end result is that it is difficult for the rest of the interprofessional team to find COPD patients early in admission. This has been addressed in some U.S. hospitals by having non-health care providers review charts to identify patients admitted with for COPD.(7) An alternate approach has been machine learning and natural language processing. This has been implemented with some success for patients with heart failure but little has been done for people with COPD.(13) In one pilot program, natural language processing helped identify patients admitted with COPD.(7)

To target scarce resources for those who need it most, it would be helpful to further identify patients at high risk of readmission. This would be the first step in determining how to implement effective strategies to reduce readmission rates. There are readmission prediction models developed for medical and surgical patients including the LACE score and the HOSPITAL score.(8, 9) Unfortunately, those that have been studied do not appear to perform well in the COPD population.(10) While factors have been identified that help predict COPD readmission, the models have not been fully validated.(11, 12) The performance could be improved through the use of unstructured data such as clinician progress notes and discharge summaries.

Early identification of people with COPD and knowledge of those who are at risk of readmission can improve health outcomes. Zafar et al. demonstrated that a comprehensive COPD care bundle that consisted of 1. inhaler assessment, 2. appropriate inhaler regimen, 3. early discharge follow up and 4. patient-centered discharge instructions reduced readmissions.(14) Identification of those at high risk of readmission could facilitate enrollment into intensive case management. Therefore, we will conduct the current study to identify patients admitted with acute exacerbations of COPD and stratify patients according to risk of readmission

Methods:

Using retrospective data from the University Health Network (UHN), we will create a data set of admissions to General Internal Medicine for the past 5 years. We estimate this will include approximately 40,000 admissions of which 2,000 will have a most responsible diagnoses of a COPD exacerbation. The data set will contain both structured coded data as well as unstructured text data. Coded data will include age, gender, medications ordered, co-morbidities, laboratory values, and pulmonary function tests. Unstructured text data will include notes in EHR: physician clinic notes, discharge summaries, admission diagnoses, progress notes, and notes from our signover system.

Analysis: We will use several different methods to develop the model including logistic regression, deep neural networks, and convolutional neural networks. Specifically, we will also use statistical machine learning algorithms for event detection using bi-directional long-short term memory neural networks across a variety of input types (e.g., Fourier filter banks, Mel-frequency cepstral coefficients, wavelets, and raw audio). We will also use traditional methods such as dynamic Bayes networks and conditional random fields. On the text analytics side, we will identify key phrases that predict readmission. One approach will be to use discourse analysis to single out "nucleus" phrases from background text. We will also build "joint" predictive models that combine features from the unstructured text and features from the structured coded data. We will use the standard Area under the ROC Curve to assess model performance and use cross validation to minimize the impact of overfitting. Finally, we will then validate our models using a dataset from different centres to determine whether these results are valid and generalizable.

Anticipated results: The development of two validated models based on EHR data: one to accurately identify patients with AECOPD and the second to accurately identify patients at high risk of readmission within 30 days.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Copd Exacerbation Acute Readmission Machine Learning Natural Language Processing

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

RETROSPECTIVE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* All admissions to General Internal Medicine between 2012-2018

Exclusion Criteria

\-
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Canadian Lung Association

INDUSTRY

Sponsor Role collaborator

Canadian Institutes of Health Research (CIHR)

OTHER_GOV

Sponsor Role collaborator

University Health Network, Toronto

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Robert Wu

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University Health Network

Toronto, Ontario, Canada

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Canada

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

19-5124

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.