Natural Compounds to Reduce Nitrite in Meat Products

NCT ID: NCT04138654

Last Updated: 2019-10-24

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE1

Total Enrollment

78 participants

Study Classification

INTERVENTIONAL

Study Start Date

2014-04-17

Study Completion Date

2015-12-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The PHYTOME project (Phytochemicals to reduce nitrite in meat products) is a major European Union (EU) co-funded research project that aims to develop innovative meat products in which the food additive nitrite has been replaced by natural compounds originating from fruits and vegetables. These biologically active compounds, also referred to as phytochemicals, are known to contribute to improved gut health and are added to the meat as natural extracts.

In a number of meat products, carefully selected combinations of natural antioxidants and other biologically active compounds occurring in vegetables, fruits and natural extracts such as coffee and tea, will be added during meat processing. Some of these compounds possess an antimicrobial activity allowing them to replace nitrite, whereas others possess a natural red colour that may contribute to the desired appearance of the products. Also, some of these compounds are known to protect colonic cells against damaging effects of cancer causing agents that may be formed in the large intestine after meat consumption.

The PHYTOME project will develop new technologies to introduce the natural extracts during processing to different types of meat products. These techniques will guarantee good sensory quality of the product as well as microbiological safety. Once these techniques have been developed and optimized at laboratory scale, the new type of products will be produced on an industrial scale. The health promoting effects of these products will be evaluated in a human dietary intervention study with healthy volunteers. After consumption of a fully controlled diet with either relatively high amounts of the traditional meat products or products produced following the new concept, faeces and colonic material will be collected and investigated for markers of colorectal cancer risk. These investigations will be performed in close collaboration with Research Institutes in the United Kingdom, Belgium, Italy and Greece, and will make use of the newest genomics techniques that are available.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Rationale:

The aim of this project is to develop new meat processing technologies, resulting in innovative meat products that have low or no nitrite and that have been shown to contribute to improved human health. This will be achieved by introducing carefully selected mixtures of biologically compounds originating from natural plant extracts. The new meat products will be evaluated in a human dietary intervention study to establish their positive effect on cancer risk markers in colonic tissues using the newest genomics techniques available.

Objective:

This project aims to evaluate the health impact of newly developed low nitrite containing meat products using genomics markers in a human dietary intervention study.

Study design:

This study has a cross-over design with only healthy volunteers. Each participant will be asked to donate a urinal, faecal and blood sample and undergo endoscopy after each intervention period. All analyses will be done for each study group separately to examine the overall effects of nitrite levels in meat.

Study population:

All subjects will be recruited by the University of Maastricht (UM) in the province of Limburg, the Netherlands, using advertisements in local newspapers as well as other media. Healthy subjects of both sexes will be selected based on predefined inclusion criteria (BMI: 18-25; \> 18 years) and randomly assigned to one of the different experimental groups.

Intervention (if applicable):

Subjects will receive a completely controlled diet with 3 different types of meat products according to the study design, with either normal levels, low or no added nitrite. After each of the three intervention periods of 15 days (300 grams meat per day) blood, urine, saliva, mouth wash and faeces will be sampled and stored appropriately at UM for later analysis. Additionally, colonic biopsies will be taken by the department of internal medicine (UM) or at the hospital of Sittard during an endoscopic examination. To evaluate the impact of nitrate in drinking water on the endogenous nitrosation processes in combination with processed red meat intake, there will be and extra intervention period of 7 days were volunteers will be asked to consume drinking water with high nitrate levels according to the Acceptable Daily Intake level (ADI: 3.7mg/kg bodyweight) in combination with 300 grams processed red meat per day. Also after this intervention period volunteers will be asked to collect a blood and saliva sample and 24h urine and faeces samples. Also, colonic biopsies will be taken by the department of internal medicine (UM) or at the hospital of Sittard during an endoscopic examination.

Main study parameters/endpoints:

* Formation of N-nitrosocompounds in human faecal and urine samples
* Reveal differences in transcriptomic and epigenomic markers after consumption of meat products enriched with natural compounds. These markers can be interpreted as an indicator of reduced cancer risk.
* Correlating gene expression changes to changes in genotoxic endpoints (DNA damage, reduction in N-Nitroso compounds (NOC)) to reveal the molecular processes involved in cancer risk reduction. The identification of molecular pathways that are crucial in the carcinogenic process will demonstrate a causal association between dietary changes and markers of carcinogenic risk.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Colon Cancer

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

PREVENTION

Blinding Strategy

SINGLE

Participants

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Normal nitrite levels

Processed meat products enriched with natural compounds will contain normal nitrite levels.

Group Type EXPERIMENTAL

Processed meat product

Intervention Type DIETARY_SUPPLEMENT

300 grams per day during 2 weeks

White meat wash-out

Intervention Type DIETARY_SUPPLEMENT

300 grams per day during 2 weeks

Processed meat products enriched with natural compounds

Intervention Type DIETARY_SUPPLEMENT

300 grams per day during 2 weeks

Drinking water containing nitrate up to acceptable daily intake level (ADI = 3.7 mg/kg bw) in combination with 300 grams of processed meat, white meat or processed meat enriched with natural compounds

Intervention Type DIETARY_SUPPLEMENT

3.7 mg nitrate/kg bw per day plus 300 grams of meat for 1 week

Reduced nitrite levels

Processed meat products enriched with natural compounds will contain reduced nitrite levels

Group Type EXPERIMENTAL

Processed meat product

Intervention Type DIETARY_SUPPLEMENT

300 grams per day during 2 weeks

White meat wash-out

Intervention Type DIETARY_SUPPLEMENT

300 grams per day during 2 weeks

Processed meat products enriched with natural compounds

Intervention Type DIETARY_SUPPLEMENT

300 grams per day during 2 weeks

Drinking water containing nitrate up to acceptable daily intake level (ADI = 3.7 mg/kg bw) in combination with 300 grams of processed meat, white meat or processed meat enriched with natural compounds

Intervention Type DIETARY_SUPPLEMENT

3.7 mg nitrate/kg bw per day plus 300 grams of meat for 1 week

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Processed meat product

300 grams per day during 2 weeks

Intervention Type DIETARY_SUPPLEMENT

White meat wash-out

300 grams per day during 2 weeks

Intervention Type DIETARY_SUPPLEMENT

Processed meat products enriched with natural compounds

300 grams per day during 2 weeks

Intervention Type DIETARY_SUPPLEMENT

Drinking water containing nitrate up to acceptable daily intake level (ADI = 3.7 mg/kg bw) in combination with 300 grams of processed meat, white meat or processed meat enriched with natural compounds

3.7 mg nitrate/kg bw per day plus 300 grams of meat for 1 week

Intervention Type DIETARY_SUPPLEMENT

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Healthy with a Body Mass Index (BMI) between 18-25, male or female
* Between 18-70 years old

Exclusion Criteria

* Alcohol abuse up to 6 months before participation in this research
* Current aberrations or insufficiency of kidney, liver, gut, heart or lungs
* Current presence of persistent inflammation in the gut or liver
* Current endocrine or metabolic aberrations
* Current anaemia or infection
* HIV infection or hepatitis
* Use of antibiotics and other medication over the last 3 months
* Current smokers
* Vegetarians
* Pregnant women
* Participants of other intervention studies during this intervention period.
Minimum Eligible Age

18 Years

Maximum Eligible Age

70 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Maastricht University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Toxicogenomics

Maastricht, (Click to Select US State), Netherlands

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Netherlands

References

Explore related publications, articles, or registry entries linked to this study.

de Oliveira CE, Stamford TL, Gomes Neto NJ, de Souza EL. Inhibition of Staphylococcus aureus in broth and meat broth using synergies of phenolics and organic acids. Int J Food Microbiol. 2010 Feb 28;137(2-3):312-6. doi: 10.1016/j.ijfoodmicro.2009.11.019. Epub 2009 Dec 3.

Reference Type BACKGROUND
PMID: 20004993 (View on PubMed)

Burt S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol. 2004 Aug 1;94(3):223-53. doi: 10.1016/j.ijfoodmicro.2004.03.022.

Reference Type BACKGROUND
PMID: 15246235 (View on PubMed)

Cheng KW, Chen F, Wang M. Inhibitory activities of dietary phenolic compounds on heterocyclic amine formation in both chemical model system and beef patties. Mol Nutr Food Res. 2007 Aug;51(8):969-76. doi: 10.1002/mnfr.200700032.

Reference Type BACKGROUND
PMID: 17628877 (View on PubMed)

Hughes R, Cross AJ, Pollock JR, Bingham S. Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis. 2001 Jan;22(1):199-202. doi: 10.1093/carcin/22.1.199.

Reference Type BACKGROUND
PMID: 11159760 (View on PubMed)

Lunn JC, Kuhnle G, Mai V, Frankenfeld C, Shuker DE, Glen RC, Goodman JM, Pollock JR, Bingham SA. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis. 2007 Mar;28(3):685-90. doi: 10.1093/carcin/bgl192. Epub 2006 Oct 19.

Reference Type BACKGROUND
PMID: 17052997 (View on PubMed)

Cross AJ, Major JM, Sinha R. Urinary biomarkers of meat consumption. Cancer Epidemiol Biomarkers Prev. 2011 Jun;20(6):1107-11. doi: 10.1158/1055-9965.EPI-11-0048. Epub 2011 Apr 28.

Reference Type BACKGROUND
PMID: 21527577 (View on PubMed)

Hall CN, Badawi AF, O'Connor PJ, Saffhill R. The detection of alkylation damage in the DNA of human gastrointestinal tissues. Br J Cancer. 1991 Jul;64(1):59-63. doi: 10.1038/bjc.1991.239.

Reference Type BACKGROUND
PMID: 1854628 (View on PubMed)

Povey AC, Badawi AF, Cooper DP, Hall CN, Harrison KL, Jackson PE, Lees NP, O'Connor PJ, Margison GP. DNA alkylation and repair in the large bowel: animal and human studies. J Nutr. 2002 Nov;132(11 Suppl):3518S-3521S. doi: 10.1093/jn/132.11.3518S.

Reference Type BACKGROUND
PMID: 12421880 (View on PubMed)

Georgiadis P, Kaila S, Makedonopoulou P, Fthenou E, Chatzi L, Pletsa V, Kyrtopoulos SA. Development and validation of a new, sensitive immunochemical assay for O(6)-methylguanine in DNA and its application in a population study. Cancer Epidemiol Biomarkers Prev. 2011 Jan;20(1):82-90. doi: 10.1158/1055-9965.EPI-10-0788. Epub 2010 Nov 16.

Reference Type BACKGROUND
PMID: 21081711 (View on PubMed)

MAQC Consortium; Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC, Setterquist RA, Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW, Goodsaid FM, Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri RK, Schrf U, Thierry-Mieg J, Wang C, Wilson M, Wolber PK, Zhang L, Amur S, Bao W, Barbacioru CC, Lucas AB, Bertholet V, Boysen C, Bromley B, Brown D, Brunner A, Canales R, Cao XM, Cebula TA, Chen JJ, Cheng J, Chu TM, Chudin E, Corson J, Corton JC, Croner LJ, Davies C, Davison TS, Delenstarr G, Deng X, Dorris D, Eklund AC, Fan XH, Fang H, Fulmer-Smentek S, Fuscoe JC, Gallagher K, Ge W, Guo L, Guo X, Hager J, Haje PK, Han J, Han T, Harbottle HC, Harris SC, Hatchwell E, Hauser CA, Hester S, Hong H, Hurban P, Jackson SA, Ji H, Knight CR, Kuo WP, LeClerc JE, Levy S, Li QZ, Liu C, Liu Y, Lombardi MJ, Ma Y, Magnuson SR, Maqsodi B, McDaniel T, Mei N, Myklebost O, Ning B, Novoradovskaya N, Orr MS, Osborn TW, Papallo A, Patterson TA, Perkins RG, Peters EH, Peterson R, Philips KL, Pine PS, Pusztai L, Qian F, Ren H, Rosen M, Rosenzweig BA, Samaha RR, Schena M, Schroth GP, Shchegrova S, Smith DD, Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z, Thierry-Mieg D, Thompson KL, Tikhonova I, Turpaz Y, Vallanat B, Van C, Walker SJ, Wang SJ, Wang Y, Wolfinger R, Wong A, Wu J, Xiao C, Xie Q, Xu J, Yang W, Zhang L, Zhong S, Zong Y, Slikker W Jr. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006 Sep;24(9):1151-61. doi: 10.1038/nbt1239.

Reference Type BACKGROUND
PMID: 16964229 (View on PubMed)

Jetten MJ, Gaj S, Ruiz-Aracama A, de Kok TM, van Delft JH, Lommen A, van Someren EP, Jennen DG, Claessen SM, Peijnenburg AA, Stierum RH, Kleinjans JC. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):320-8. doi: 10.1016/j.taap.2012.01.009. Epub 2012 Jan 20.

Reference Type BACKGROUND
PMID: 22285215 (View on PubMed)

Mathijs K, Brauers KJ, Jennen DG, Boorsma A, van Herwijnen MH, Gottschalk RW, Kleinjans JC, van Delft JH. Discrimination for genotoxic and nongenotoxic carcinogens by gene expression profiling in primary mouse hepatocytes improves with exposure time. Toxicol Sci. 2009 Dec;112(2):374-84. doi: 10.1093/toxsci/kfp229. Epub 2009 Sep 21.

Reference Type BACKGROUND
PMID: 19770486 (View on PubMed)

Mathijs K, Brauers KJ, Jennen DG, Lizarraga D, Kleinjans JC, van Delft JH. Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds. Mutagenesis. 2010 Nov;25(6):561-8. doi: 10.1093/mutage/geq040. Epub 2010 Jul 21.

Reference Type BACKGROUND
PMID: 20650930 (View on PubMed)

Tannenbaum SR, Sinskey AJ, Weisman M, Bishop W. Nitrite in human saliva. Its possible relationship to nitrosamine formation. J Natl Cancer Inst. 1974 Jul;53(1):79-84. No abstract available.

Reference Type BACKGROUND
PMID: 4835100 (View on PubMed)

Shechter H, Gruener N, Shuval HI. A micromethod for the determination of nitrite in blood. Anal Chim Acta. 1972 Jun;60(1):93-9. doi: 10.1016/S0003-2670(01)81887-0. No abstract available.

Reference Type BACKGROUND
PMID: 4667452 (View on PubMed)

Hodgson JM, Burke V, Beilin LJ, Puddey IB. Partial substitution of carbohydrate intake with protein intake from lean red meat lowers blood pressure in hypertensive persons. Am J Clin Nutr. 2006 Apr;83(4):780-7. doi: 10.1093/ajcn/83.4.780.

Reference Type RESULT
PMID: 16600928 (View on PubMed)

Bingham SA, Pignatelli B, Pollock JR, Ellul A, Malaveille C, Gross G, Runswick S, Cummings JH, O'Neill IK. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis. 1996 Mar;17(3):515-23. doi: 10.1093/carcin/17.3.515.

Reference Type RESULT
PMID: 8631138 (View on PubMed)

Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen. 2004;44(1):44-55. doi: 10.1002/em.20030.

Reference Type RESULT
PMID: 15199546 (View on PubMed)

Wakabayashi K, Nagao M, Esumi H, Sugimura T. Food-derived mutagens and carcinogens. Cancer Res. 1992 Apr 1;52(7 Suppl):2092s-2098s.

Reference Type RESULT
PMID: 1544146 (View on PubMed)

Kuhnle GG, Bingham SA. Dietary meat, endogenous nitrosation and colorectal cancer. Biochem Soc Trans. 2007 Nov;35(Pt 5):1355-7. doi: 10.1042/BST0351355.

Reference Type RESULT
PMID: 17956350 (View on PubMed)

Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003 May 15;63(10):2358-60.

Reference Type RESULT
PMID: 12750250 (View on PubMed)

Haorah J, Zhou L, Wang X, Xu G, Mirvish SS. Determination of total N-nitroso compounds and their precursors in frankfurters, fresh meat, dried salted fish, sauces, tobacco, and tobacco smoke particulates. J Agric Food Chem. 2001 Dec;49(12):6068-78. doi: 10.1021/jf010602h.

Reference Type RESULT
PMID: 11743810 (View on PubMed)

Ozel MZ, Gogus F, Yagci S, Hamilton JF, Lewis AC. Determination of volatile nitrosamines in various meat products using comprehensive gas chromatography-nitrogen chemiluminescence detection. Food Chem Toxicol. 2010 Nov;48(11):3268-73. doi: 10.1016/j.fct.2010.08.036. Epub 2010 Sep 8.

Reference Type RESULT
PMID: 20816717 (View on PubMed)

Hebels DG, Briede JJ, Khampang R, Kleinjans JC, de Kok TM. Radical mechanisms in nitrosamine- and nitrosamide-induced whole-genome gene expression modulations in Caco-2 cells. Toxicol Sci. 2010 Jul;116(1):194-205. doi: 10.1093/toxsci/kfq121. Epub 2010 Apr 19.

Reference Type RESULT
PMID: 20403970 (View on PubMed)

Hebels DG, Jennen DG, van Herwijnen MH, Moonen EJ, Pedersen M, Knudsen LE, Kleinjans JC, de Kok TM. Whole-genome gene expression modifications associated with nitrosamine exposure and micronucleus frequency in human blood cells. Mutagenesis. 2011 Nov;26(6):753-61. doi: 10.1093/mutage/ger043. Epub 2011 Jul 1.

Reference Type RESULT
PMID: 21724973 (View on PubMed)

Hebels DG, Sveje KM, de Kok MC, van Herwijnen MH, Kuhnle GG, Engels LG, Vleugels-Simon CB, Mares WG, Pierik M, Masclee AA, Kleinjans JC, de Kok TM. N-nitroso compound exposure-associated transcriptomic profiles are indicative of an increased risk for colorectal cancer. Cancer Lett. 2011 Oct 1;309(1):1-10. doi: 10.1016/j.canlet.2011.05.007. Epub 2011 Jun 12.

Reference Type RESULT
PMID: 21669488 (View on PubMed)

Hebels DG, Sveje KM, de Kok MC, van Herwijnen MH, Kuhnle GG, Engels LG, Vleugels-Simon CB, Mares WG, Pierik M, Masclee AA, Kleinjans JC, de Kok TM. Red meat intake-induced increases in fecal water genotoxicity correlate with pro-carcinogenic gene expression changes in the human colon. Food Chem Toxicol. 2012 Feb;50(2):95-103. doi: 10.1016/j.fct.2011.10.038. Epub 2011 Oct 14.

Reference Type RESULT
PMID: 22019696 (View on PubMed)

Honikel KO. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008 Jan;78(1-2):68-76. doi: 10.1016/j.meatsci.2007.05.030. Epub 2007 Jun 27.

Reference Type RESULT
PMID: 22062097 (View on PubMed)

Lee SY, Munerol B, Pollard S, Youdim KA, Pannala AS, Kuhnle GG, Debnam ES, Rice-Evans C, Spencer JP. The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth. Free Radic Biol Med. 2006 Jan 15;40(2):323-34. doi: 10.1016/j.freeradbiomed.2005.08.031. Epub 2005 Oct 11.

Reference Type RESULT
PMID: 16413414 (View on PubMed)

Pollard SE, Kuhnle GG, Vauzour D, Vafeiadou K, Tzounis X, Whiteman M, Rice-Evans C, Spencer JP. The reaction of flavonoid metabolites with peroxynitrite. Biochem Biophys Res Commun. 2006 Dec 1;350(4):960-8. doi: 10.1016/j.bbrc.2006.09.131. Epub 2006 Oct 2.

Reference Type RESULT
PMID: 17045238 (View on PubMed)

de Kok TM, van Breda SG, Manson MM. Mechanisms of combined action of different chemopreventive dietary compounds: a review. Eur J Nutr. 2008 May;47 Suppl 2:51-9. doi: 10.1007/s00394-008-2006-y.

Reference Type RESULT
PMID: 18458834 (View on PubMed)

Bartsch H, Frank N. Blocking the endogenous formation of N-nitroso compounds and related carcinogens. IARC Sci Publ. 1996;(139):189-201.

Reference Type RESULT
PMID: 8923031 (View on PubMed)

Ward MH, Heineman EF, Markin RS, Weisenburger DD. Adenocarcinoma of the stomach and esophagus and drinking water and dietary sources of nitrate and nitrite. Int J Occup Environ Health. 2008 Jul-Sep;14(3):193-7. doi: 10.1179/oeh.2008.14.3.193.

Reference Type RESULT
PMID: 18686719 (View on PubMed)

Rowland IR, Granli T, Bockman OC, Key PE, Massey RC. Endogenous N-nitrosation in man assessed by measurement of apparent total N-nitroso compounds in faeces. Carcinogenesis. 1991 Aug;12(8):1395-401. doi: 10.1093/carcin/12.8.1395.

Reference Type RESULT
PMID: 1860160 (View on PubMed)

Kuhnle GG, Story GW, Reda T, Mani AR, Moore KP, Lunn JC, Bingham SA. Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic Biol Med. 2007 Oct 1;43(7):1040-7. doi: 10.1016/j.freeradbiomed.2007.03.011. Epub 2007 Mar 13.

Reference Type RESULT
PMID: 17761300 (View on PubMed)

Lewin MH, Bailey N, Bandaletova T, Bowman R, Cross AJ, Pollock J, Shuker DE, Bingham SA. Red meat enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res. 2006 Feb 1;66(3):1859-65. doi: 10.1158/0008-5472.CAN-05-2237.

Reference Type RESULT
PMID: 16452248 (View on PubMed)

Kok TM, Breda SG, Briede JJ. Genomics-based identification of molecular mechanisms behind the cancer preventive action of phytochemicals: potential and challenges. Curr Pharm Biotechnol. 2012 Jan;13(1):255-64. doi: 10.2174/138920112798868601.

Reference Type RESULT
PMID: 21466423 (View on PubMed)

Sinha R, Zhao N, Goedert JJ, Byrd DA, Wan Y, Hua X, Hullings AG, Knight R, Breda SV, Mathijs K, de Kok TM, Ward MH; PHYTOME consortium members. Effects of processed meat and drinking water nitrate on oral and fecal microbial populations in a controlled feeding study. Environ Res. 2021 Jun;197:111084. doi: 10.1016/j.envres.2021.111084. Epub 2021 Mar 27.

Reference Type DERIVED
PMID: 33785324 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

NL43956.068.13

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Green Vegetables and Women's Health
NCT01726127 COMPLETED NA
Pharmacokinetics of Carnosine
NCT00721708 COMPLETED NA
Lycopene In Preventing of Prostate Cancer
NCT00006078 COMPLETED PHASE1
GPR146 and Cholesterol Metabolism
NCT07142317 NOT_YET_RECRUITING NA