miR-142-3p as Potential Biomarker of Synaptopathy in MS
NCT ID: NCT03999788
Last Updated: 2024-03-29
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
1000 participants
INTERVENTIONAL
2019-12-10
2025-12-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Although reliable biomarkers of MS synaptopathy are still missing, recent researches highlighted miR-142-3p as a possible candidate. Indeed, miR-142-3p has been described to promote the IL-1beta-dependent synaptopathy by downregulating GLAST/EAAT1, a crucial glial transporter involved in glutamate homeostasis. Furthermore, mir-142-3p has been suggested as a putative negative MS prognostic factor and a target of current MS disease modifying therapies.
The hypothesis of this study is that miR-142-3p represents a good biomarker for excitotoxic synaptopathy to predict MS course, and, possibly, treatment efficacy at individual level, including both pharmacological strategies and non-pharmacological interventions, like therapeutic transcranial magnetic stimulation (TMS) to ameliorate MS spasticity. To this aim, the role of miR-142-3p in MS synaptopathy, its potential impact on the efficacy of disease-modifying treatments currently used in MS therapy as well as the influence of genetic variants (SNPs) of miR-142-3p and GLAST/EAAT1 coding genes on the responsiveness to therapeutic TMS, will be further investigated in the study. By validating miR-142-3p as potential biomarker of synaptopathy, it is expect to improve MS prognosis and personalized therapies.
Patients with MS, who will undergo neurological assessment, conventional brain MRI scan, and CSF and blood withdrawal for diagnostic and clinical reasons at the Neurology Unit of IRCCS INM-Neuromed will be enrolled in the study. Neurophysiological, biochemical and genetic parameters together with lower limb spasticity will be evaluated. Subjects, who will undergo blood sampling and/or lumbar puncture for clinical suspicions, later on not confirmed, will be recruited as control group.
A subgroup of MS patients showing lower limb spasticity will be included in a two-week repetitive TMS stimulation protocol (iTBS) to correlate the patient responsiveness to this non-pharmacological treatment with MS-significant SNPs of both miR-142-3p and GLAST/EAAT1 coding genes.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
MicroRNA-150 and microRNA-155 in Multiple Sclerosis
NCT04300543
Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
NCT04380220
Study Of SB-683699 Compared To Placebo In Subjects With Relapsing-Remitting Multiple Sclerosis (MS)
NCT00395317
Consolidation Therapy with Cladribine in Relapsing Multiple Sclerosis Patients
NCT06854094
Validation of Multimodal Evoked Potentials (mmEP) for Predicting Disease Progression in Multiple Sclerosis
NCT03632473
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
MicroRNAs (miRs) circulating in the cerebrospinal fluids (CSF) are good candidates as possible sensitive biomarkers for MS synaptopathy-driven disease progression. They represent a new class of modulators of gene expression with stable presence in the body fluids and with a critical role in many physiological and pathological processes, especially in the central nervous system. Accordingly, it has been recently demonstrated that miR-142-3p is a crucial component in a detrimental regulatory axis of EAE/MS excitotoxic synaptic dysfunctions, by reducing the level of the glial glutamate aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) protein. Moreover, miR-142-3p levels are increased in both EAE brains and CSFs of patients with relapsing-remitting MS (RRMS) and correlate with disease progression. Preliminary data also reveal that miR-142-3p is direct target of different pharmacological treatments for MS, while the action of non-pharmacological treatments, as therapeutic transcranial magnetic stimulation (TMS) to ameliorate MS spasticity, is still unknown.
Based on these considerations, a prospective and retrospective cohort study of about six years will be performed to assess whether miR-142-3p is a possible biomarker for MS synaptopathy-driven disease progression (AIM1) and for the efficacy of disease-modifying treatments (DMTs) currently used in MS therapy (AIM2a). Moreover, a genetic screening from peripheral blood will be conducted in order to identify single nucleotide polymorphisms (SNPs) in coding and/or regulating regions of miR-142-3p and GLAST/EAAT1 genes, associated with MS synaptopathy (AIM2b). Finally, a repetitive TMS stimulation protocol (iTBS) will be performed in a subgroup of screened MS patients with lower limb spasticity (interventional substudy) to evaluate the patient responsiveness to the treatment linked to the identified SNPs (AIM2c).
Given the heterogeneity and complexity of MS disease, multivariable approach will permit to dissect miR-142-3p contribution to MS course influenced by synaptopathy (AIM1).
Firstly, miR-142-3p levels in MS CSF (the day of recruitment, T0) will be correlated with other possible variables relevant to disease progression, such as:
* clinical (disease duration, estimated as the number of years from onset to the most recent assessment of disability; disability, evaluated using EDSS = Expanded Disability Status Scale; Progression Index, PI = EDSS/disease duration; change in ARR = Annualized Relapse Rate) and neuroradiological parameters (dual-echo proton density; FLAIR = fluid-attenuated inversion recovery; T2-WI = T2-weighted spin-echo images and T1-WI = pre-contrast and post-contrast T1-weighted spin-echo images after intravenous gadolinium (Gd) infusion) at T0 and once per year during a 6-year-follow-up if no relapse occurs (T12, T24, T36, T48, T60 , T72);
* levels of inflammatory and potential excitotoxic protein factors (as IL-1β, TNF and RANTES-CCL5) in the CSF (T0);
* levels of neurofilaments, beta amyloid, tau proteins and growth factors (like NGF, PDGF and BDNF) in the CSF, as possible indicators of neurodegenerative and regenerative processes occurring at the CSF withdrawal (T0).
To reduce the variable dimension, Principal Component Analysis (PCA) will be applied taking into account the contribution of miR-142-3p to disease progression as part of a complex network of molecules circulating in the CSF, and univariable and multivariable correlations will be repeated.
In multivariable analysis (based on multivariable generalized linear models, GLM), miR-142-3p levels in the CSF (or PCA components including miR-142-3p as part of the component) will be considered as the independent variable adjusting for demographical, clinical and neuroradiological values as well as different DMT treatments. A further analysis based on treatment stratifications of the patients will be attempted (AIM2a).
Lastly, the CSF levels of miR-142-3p (or PCA components including miR-142-3p) identified to associate with disease progression variables will be correlated with neurophysiological parameters, recorded by means of TMS to evaluate cortical excitability and plasticity (SICI = short interval intracortical inhibition; ICF = intracortical facilitation; LICI = long interval intracortical inhibition; PAS = Paired Associative Stimulation) in MS patients at T0. Thus, miR-142-3p circulating in the CSF will be validated as possible biomarkers of synaptopathy-driven disease progression (as single molecules or as part of a PCA component).
To identify genetic variants of miR-142-3p and GLAST/EAAT1 coding genes relevant to MS synaptopathy (AIM2b) SNPs will be analyzed at T0 and will be correlated with miR-142-3p levels in the CSF and with other possible variables relevant to disease progression as in AIM1. PCA and GLM models will be applied as in AIM1.
To evaluate treatment responsiveness in the subgroup of screened MS patients included in the interventional substudy based on a two-week protocol of iTBS for reducing lower limb spasticity, the H/M amplitude ratio of the Soleus H reflex and the Modified Ashworth Scale (MAS) will be considered before (W0) and after (W2) the stimulation protocol. Possible association between patient responsiveness to the iTBS stimulation protocol and specific SNPs will be assessed (AIM2c).
Statistical analysis will be performed using Prism GraphPad 6.0, IBM SPSS Statistics 15.0, R software and T-MEV 4.4.1. Data will be tested for normality distribution through the Kolmogorov-Smirnov and Shapiro-Wilk tests. The k-means method will be used to divide MS patients into homogeneous clusters, based on miR-142-3p levels in the CSF and other relevant parameters. Differences between two groups will be analyzed using Student's t-test, Mann-Whitney test, Fisher exact test or log-rank test, as appropriate; multiple comparisons will be performed by ANOVA followed by Tukey HSD or by Kruskal-Wallis. Pearson or nonparametric Spearman correlation coefficients will be performed to evaluate the association of miR-142-3p levels in the CSF or specific genetic variants of MIR142 and SLC1A3 (or the correspondent PCA component, see next) with continuous demographic, clinical and neuroradiological parameters (e.g Age, changes in EDSS, Number of T2 lesions, etc.). For the multiple comparisons it will be controlled the False Discovery Rate (FDR) applying the method proposed by Benjamini and Hochberg.
PCA will be applied to represent sets of potentially correlated variables (CSF levels of miR-142-3p or specific genetic variants of MIR142 and SLC1A3, inflammatory and potential excitotoxic protein factors and levels of neurofilaments, beta amyloid, tau protein and growth factors) with principal components (PC) that are linearly uncorrelated obtained using orthogonal transformation. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variables is reduced.
To validate miR-142-3p as biomarker of synaptopathy-driven disease progression (measured in terms of clinical or radiological changes and TMS variables) or specific SNPs of MIR142 and SLC1A3 linked to MS synaptopathy, GLM models will be applied considering, respectively, the miR-142-3p level in the CSF (or the identified PCA components including miRs) or the genetic variants as an independent variable adjusting for demographical, clinical, neuroradiological, neurophysiological, biochemical factors and treatments.
Data will be presented as the mean (standard deviation, sd) or median (25th- 75th percentile). The significance level is established at p\<0.05.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
multiple sclerosis patients
lumbar puncture, microRNAs quantification in CSF samples, SNPs analysis in blood samples
lumbar puncture and blood withdrawal
lumbar puncture performed to detect OCB for diagnostic purposes and blood withdrawal for SNP screening
control subjects
lumbar puncture, microRNAs quantification in CSF samples, SNPs analysis in blood samples
lumbar puncture and blood withdrawal
lumbar puncture performed to detect OCB for diagnostic purposes and blood withdrawal for SNP screening
multiple sclerosis patients with spasticity and selected SNPs
iTBS therapeutic protocol
Intermittent theta burst stimulation (iTBS) therapeutic protocol for spasticity
iTBS will be delivered over the scalp site corresponding to the leg area of primary motor cortex contralateral to the affected limb. The active motor threshold (AMT) will be defined as the minimum stimulation intensity required to evoke a liminal motor potential from the Soleus muscle during voluntary contraction. The stimulation intensity will be about 80% of AMT. The iTBS stimulation protocol consists of 10 bursts, each burst composed of three stimuli at 50 Hz, repeated at a theta frequency of 5 Hz every 10 s for a total of 600 stimuli (200 s). If no MEP will be detectable from the contralateral leg, the site of stimulation will be determined as symmetrical to the motor hot spot. If no MEP will be detectable even from the contralateral leg the coil will be held tangentially to the scalp with its centre placed 1 cm ahead and 1 cm lateral from CZ (10-20 EEG system). In these cases, stimulation intensity will be set to 50% of the maximum stimulator output.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
lumbar puncture and blood withdrawal
lumbar puncture performed to detect OCB for diagnostic purposes and blood withdrawal for SNP screening
Intermittent theta burst stimulation (iTBS) therapeutic protocol for spasticity
iTBS will be delivered over the scalp site corresponding to the leg area of primary motor cortex contralateral to the affected limb. The active motor threshold (AMT) will be defined as the minimum stimulation intensity required to evoke a liminal motor potential from the Soleus muscle during voluntary contraction. The stimulation intensity will be about 80% of AMT. The iTBS stimulation protocol consists of 10 bursts, each burst composed of three stimuli at 50 Hz, repeated at a theta frequency of 5 Hz every 10 s for a total of 600 stimuli (200 s). If no MEP will be detectable from the contralateral leg, the site of stimulation will be determined as symmetrical to the motor hot spot. If no MEP will be detectable even from the contralateral leg the coil will be held tangentially to the scalp with its centre placed 1 cm ahead and 1 cm lateral from CZ (10-20 EEG system). In these cases, stimulation intensity will be set to 50% of the maximum stimulator output.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Diagnosis of MS definite according to 2010 revised McDonald's criteria (Polman et al., 2011);
* Age range 18-65 (included);
* EDSS range between 0 and 6 (included);
* Ability to participate to the study protocol.
Exclusion Criteria
* Altered blood count;
* Female with positive pregnancy test at baseline or having active pregnancy plans in the following months after the beginning of the protocol;
* Contraindications to gadolinium (MRI);
* Contraindications to TMS;
* Patients with comorbidities for neurological disease other than MS, included other neurodegenerative chronic diseases or chronic infections (i.e tubercolosis, infectious hepatitis, HIV/AIDS);
* Unstable medical condition or infections;
* Use of medications with increased risk of seizures (i.e. Fampridine, 4- Aminopyridine);
* Concomitant use of drugs that may alter synaptic transmission and plasticity (cannabinoids, L-dopa, antiepiletics, nicotine, baclofen, SSRI, botulinum toxin).
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Neuromed IRCCS
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Diego Centonze
Haed of Neurology Unit
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Diego Centonze, MD
Role: PRINCIPAL_INVESTIGATOR
IRCCS Neuromed, Pozzilli, Isernia Italy
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
IRCCS Neuromed
Pozzilli, Isernia, Italy
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Mandolesi G, De Vito F, Musella A, Gentile A, Bullitta S, Fresegna D, Sepman H, Di Sanza C, Haji N, Mori F, Buttari F, Perlas E, Ciotti MT, Hornstein E, Bozzoni I, Presutti C, Centonze D. miR-142-3p Is a Key Regulator of IL-1beta-Dependent Synaptopathy in Neuroinflammation. J Neurosci. 2017 Jan 18;37(3):546-561. doi: 10.1523/JNEUROSCI.0851-16.2016.
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol. 2015 Dec;11(12):711-24. doi: 10.1038/nrneurol.2015.222. Epub 2015 Nov 20.
Mori F, Codeca C, Kusayanagi H, Monteleone F, Boffa L, Rimano A, Bernardi G, Koch G, Centonze D. Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis. Eur J Neurol. 2010 Feb;17(2):295-300. doi: 10.1111/j.1468-1331.2009.02806.x. Epub 2009 Oct 23.
Centonze D, Koch G, Versace V, Mori F, Rossi S, Brusa L, Grossi K, Torelli F, Prosperetti C, Cervellino A, Marfia GA, Stanzione P, Marciani MG, Boffa L, Bernardi G. Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology. 2007 Mar 27;68(13):1045-50. doi: 10.1212/01.wnl.0000257818.16952.62.
Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D'Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci. 2009 Mar 18;29(11):3442-52. doi: 10.1523/JNEUROSCI.5804-08.2009.
Gandhi R. miRNA in multiple sclerosis: search for novel biomarkers. Mult Scler. 2015 Aug;21(9):1095-103. doi: 10.1177/1352458515578771. Epub 2015 Apr 28.
International Multiple Sclerosis Genetics Consortium; Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007 Aug 30;357(9):851-62. doi: 10.1056/NEJMoa073493. Epub 2007 Jul 29.
Kiselev I, Bashinskaya V, Kulakova O, Baulina N, Popova E, Boyko A, Favorova O. Variants of MicroRNA Genes: Gender-Specific Associations with Multiple Sclerosis Risk and Severity. Int J Mol Sci. 2015 Aug 24;16(8):20067-81. doi: 10.3390/ijms160820067.
Bergman P, Piket E, Khademi M, James T, Brundin L, Olsson T, Piehl F, Jagodic M. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016 Apr 20;3(3):e219. doi: 10.1212/NXI.0000000000000219. eCollection 2016 Jun.
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, Piras E, Gargano F, Borsellino G, Battistini L, Schubart A, Mandolesi G, Centonze D. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation. 2016 Aug 26;13(1):207. doi: 10.1186/s12974-016-0686-4.
Gentile A, Musella A, De Vito F, Fresegna D, Bullitta S, Rizzo FR, Centonze D, Mandolesi G. Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. J Neuroinflammation. 2018 Jan 5;15(1):5. doi: 10.1186/s12974-017-1048-6.
Harris VK, Sadiq SA. Biomarkers of therapeutic response in multiple sclerosis: current status. Mol Diagn Ther. 2014 Dec;18(6):605-17. doi: 10.1007/s40291-014-0117-0.
Housley WJ, Pitt D, Hafler DA. Biomarkers in multiple sclerosis. Clin Immunol. 2015 Nov;161(1):51-8. doi: 10.1016/j.clim.2015.06.015. Epub 2015 Jul 2.
Meinl E, Meister G. MicroRNAs in the CSF: macro-advance in MS? Neurology. 2012 Nov 27;79(22):2162-3. doi: 10.1212/WNL.0b013e31827597d1. Epub 2012 Oct 17. No abstract available.
Quintana E, Ortega FJ, Robles-Cedeno R, Villar ML, Buxo M, Mercader JM, Alvarez-Cermeno JC, Pueyo N, Perkal H, Fernandez-Real JM, Ramio-Torrenta L. miRNAs in cerebrospinal fluid identify patients with MS and specifically those with lipid-specific oligoclonal IgM bands. Mult Scler. 2017 Nov;23(13):1716-1726. doi: 10.1177/1352458516684213. Epub 2017 Jan 9.
Stampanoni Bassi M, Gilio L, Buttari F, Maffei P, Marfia GA, Restivo DA, Centonze D, Iezzi E. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach. Front Neurosci. 2017 Dec 13;11:710. doi: 10.3389/fnins.2017.00710. eCollection 2017.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
RF-2018-12366144
Identifier Type: OTHER_GRANT
Identifier Source: secondary_id
miR-142-3p_MSSynPathyBiomarker
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.