Exercise-based Therapy for Multiple Sclerosis Patients

NCT ID: NCT03735524

Last Updated: 2018-11-08

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

NA

Total Enrollment

35 participants

Study Classification

INTERVENTIONAL

Study Start Date

2019-05-31

Study Completion Date

2021-05-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Exercise is reported to have significant beneficial effects in Multiple Sclerosis (MS) patients, particularly with respect to cardiovascular function, aerobic capacity, muscular strength and ambulatory performance. Inflammation-mediated synaptic alterations have been measured by means of transcranial magnetic stimulation (TMS) and found to correlate with disability level in MS. Due to their plastic nature, synapses represent a good therapeutic target that is sensitive to environmental stimulation, such as physical exercise.

The aim of this study is to evaluate the effect of exercise in reducing peripheral inflammation that drives the synaptic pathology and neurodegeneration occurring in the brain of MS patients. Recruited patients will be given a therapeutic exercise program, consisting of 3 hours of treatment per day, 6 days/week for 4 weeks. The program will be applied on hospitalised patients to ensure adherence to the program and reducing the risk of abandonment. The rehabilitation program will be planned by a physician specialised in physical and rehabilitation medicine and will consist of both passive and active therapeutic exercises specifically aimed at restoring or maintaining muscular flexibility, range of motion, balance, coordination of movements, postural passages and transfers, and ambulation. The day of recruitment (t0) patients will undergo radiological and neurological examination. The effect of exercise will be evaluated with respect to neurologic function, mood and neurophysiological parameters, autonomic system function, and peripheral marker levels assessed at t0 and after 4 weeks (t1). A second time point will be included (t2, 8 weeks after the end of the treatment) to address long-term effects, with analysis limited to neurologic and mood measurements and peripheral marker levels.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Clinical manifestations of Multiple Sclerosis (MS) indicate the involvement of motor, sensory, visual, and autonomic systems as well as brain circuits implicated in cognition and emotion.

Due to the complexity and the heterogeneity of the disease course and the clinical symptoms, the search for the appropriate personalized treatment and the disease management remains a challenging issue. Nowadays, it is increasingly recognized that MS treatment and care demand a multi-disciplinary approach, including non-pharmacological interventions, aimed to improve quality of life (QoL) and engagement in daily-life activities. Active-rehabilitation or exercise is currently considered as the form of non-medical interventions that best meets these requirements.

In the context of MS, there is now general agreement on the positive effects of exercise for both relapsing remitting (RR) and progressive (P) MS patients. Significant effects have been described for cardiovascular functions, aerobic capacity, muscular strength and ambulatory performance. Even if clear conclusions cannot be drawn, other outcomes, like balance and depression seem to be positively influenced by exercise. Symptoms linked to autonomic dysfunction caused by sympathovagal imbalance, like altered heart rate variability (HRV) and correlating with the load of inflammation in MS may benefit from exercise, being the physical activity an important modulator of the peripheral nervous system. However, the DMT potential of exercise is still overlooked, since only few studies have investigated the influence of exercise on inflammation and neurodegeneration, the main pathogenic events in MS with unclear and, to some extent, contrasting data.

This longitudinal study aims is designed to enrol at least 35 MS patients to perform a conventional 4 weeks rehabilitation program. Physical therapy will be performed for 6 days/week for 4 weeks and will consist of 3 hours of treatment. The rehabilitation program will be planned by a physician specialized in physical and rehabilitation medicine and will consist of both passive and active therapeutic exercises specifically aimed at restoring or maintaining muscular flexibility, range of motion, balance, coordination of movements, postural passages and transfers, and ambulation. According to the patient's disability status, different therapeutic exercises will be performed by qualified physiotherapists. Moreover, intensity of exercise will be tailored to the level of patient's disability. To avoid fatigue and to increase patient's tolerance to the exercises, compensative pauses will be included. Moreover, genotype analysis from peripheral blood cells will be performed to identify single nucleotide polymorphisms (SNPs) in coding regions and/or gene regulators (microRNA or proteins) involved in MS synaptic transmission alterations, like NGF, PDGF, which might correlate to clinical parameters described as both primary and secondary outcomes.

Statistical analysis will be performed by IBM SPSS Statistics 15.0. Data will be tested for normality distribution through the Kolmogorov-Smirnov test. Differences between pre- and post-values will be analyzed using parametric Student's t-test for matched pairs, or if necessary, nonparametric Wilcoxon signed-rank test for matched pairs. Changes in categorical variables will be assessed by McNemar test. Correlation analysis will be performed by calculating Pearson or Spearman coefficients as appropriate. Data will be presented as the mean (standard deviation, sd) or median (25th- 75th percentile). The significance level is established at p\<0.05.

Sample size calculation was performed according to the following criteria. Supposing that in MS patients the cytokine values in particular the TNF levels after exercise therapy decrease in a manner similar to that showed in the study by Hedegaard et al (2008), the investigators can estimate that the therapy will have a medium effect on TNF values, d=0.59, calculating a pre-mean value equal to 2611.2 (standard deviation, sd=1586.96) and post-exercise equal to 1249.1 (sd=1261.89), a correlation between pre-post values equals to -0.326. To detect as significant a moderate effect with a power of 95%, assuming a two-sided a=0.05 and applying a Wilcoxon signed-rank test for matched pairs, the investigators estimate a total number of 35 patients. The analysis was performed by G\*POWER v3.1.9.2.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Multiple Sclerosis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Exercise

Conventional rehabilitation

Group Type EXPERIMENTAL

Exercise

Intervention Type OTHER

Different exercises will be adopted including: repetition of different movements for ambulation and stair climbing, repetition of crossed patterns of movements for coordination, postural reactions while standing with eyes open and closed and oscillatory boards for balance, strengthening lower limb muscles, and low-intensity and long-duration static stretching of iliopsoas, rectus femoris, hamstrings, triceps surae, and lumbar spinal muscles for muscular flexibility and range of motion. In addition, advanced robotic therapy will be used to standardize rehabilitative treatment and to obtain more objective indexes of motor function. The Lokomat exoskeleton and the Biodex stability system will be used.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Exercise

Different exercises will be adopted including: repetition of different movements for ambulation and stair climbing, repetition of crossed patterns of movements for coordination, postural reactions while standing with eyes open and closed and oscillatory boards for balance, strengthening lower limb muscles, and low-intensity and long-duration static stretching of iliopsoas, rectus femoris, hamstrings, triceps surae, and lumbar spinal muscles for muscular flexibility and range of motion. In addition, advanced robotic therapy will be used to standardize rehabilitative treatment and to obtain more objective indexes of motor function. The Lokomat exoskeleton and the Biodex stability system will be used.

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Rehabilitation

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Ability to provide written informed consent to the study;
* Diagnosis of MS definite according to 2010 revised McDonald's criteria (Polman et al., 2011);
* Age range 18-65 (included);
* EDSS range between 4,5 and 6,5 (included);
* Ability to participate to the study protocol.

Exclusion Criteria

* Inability to provide written informed consent to the study;
* Altered blood count;
* Female with positive pregnancy test at baseline or having active pregnancy plans in the following months after the beginning of the protocol;
* Contraindications to gadolinium (MRI);
* Contraindications to TMS;
* Patients with comorbidities for neurological disease other than MS, included other neurodegenerative chronic diseases or chronic infections (i.e tubercolosis, infectious hepatitis, HIV/AIDS);
* Unstable medical condition or infections;
* Use of medications with increased risk of seizures (i.e. Fampridine, 4-Aminopyridine);
* Concomitant use of drugs that may alter synaptic transmission and plasticity (cannabinoids, L-dopa, antiepiletics, nicotine, baclofen, SSRI, botulinum toxin).
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Neuromed IRCCS

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Diego Centonze, MD

Role: PRINCIPAL_INVESTIGATOR

IRCCS Neuromed

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

IRCCS Neuromed

Pozzilli, Isernia, Italy

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Italy

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Diego Centonze, MD

Role: CONTACT

+39 3934444159

Mario Stampanoni, MD

Role: CONTACT

+39 2460181370

References

Explore related publications, articles, or registry entries linked to this study.

Charron S, McKay KA, Tremlett H. Physical activity and disability outcomes in multiple sclerosis: A systematic review (2011-2016). Mult Scler Relat Disord. 2018 Feb;20:169-177. doi: 10.1016/j.msard.2018.01.021. Epub 2018 Feb 2.

Reference Type BACKGROUND
PMID: 29414293 (View on PubMed)

Compston A, Coles A. Multiple sclerosis. Lancet. 2002 Apr 6;359(9313):1221-31. doi: 10.1016/S0140-6736(02)08220-X.

Reference Type BACKGROUND
PMID: 11955556 (View on PubMed)

Dalgas U, Stenager E, Jakobsen J, Petersen T, Hansen HJ, Knudsen C, Overgaard K, Ingemann-Hansen T. Resistance training improves muscle strength and functional capacity in multiple sclerosis. Neurology. 2009 Nov 3;73(18):1478-84. doi: 10.1212/WNL.0b013e3181bf98b4.

Reference Type BACKGROUND
PMID: 19884575 (View on PubMed)

Deckx N, Wens I, Nuyts AH, Hens N, De Winter BY, Koppen G, Goossens H, Van Damme P, Berneman ZN, Eijnde BO, Cools N. 12 Weeks of Combined Endurance and Resistance Training Reduces Innate Markers of Inflammation in a Randomized Controlled Clinical Trial in Patients with Multiple Sclerosis. Mediators Inflamm. 2016;2016:6789276. doi: 10.1155/2016/6789276. Epub 2016 Jan 20.

Reference Type BACKGROUND
PMID: 26903712 (View on PubMed)

Edwards T, Pilutti LA. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: A systematic review and future research directions. Mult Scler Relat Disord. 2017 Aug;16:31-39. doi: 10.1016/j.msard.2017.06.003. Epub 2017 Jun 12.

Reference Type BACKGROUND
PMID: 28755682 (View on PubMed)

Feinstein A, DeLuca J, Baune BT, Filippi M, Lassman H. Cognitive and neuropsychiatric disease manifestations in MS. Mult Scler Relat Disord. 2013 Jan;2(1):4-12. doi: 10.1016/j.msard.2012.08.001. Epub 2012 Sep 25.

Reference Type BACKGROUND
PMID: 25877449 (View on PubMed)

Feys P, Giovannoni G, Dijsselbloem N, Centonze D, Eelen P, Lykke Andersen S. The importance of a multi-disciplinary perspective and patient activation programmes in MS management. Mult Scler. 2016 Aug;22(2 Suppl):34-46. doi: 10.1177/1352458516650741.

Reference Type BACKGROUND
PMID: 27465614 (View on PubMed)

Golzari Z, Shabkhiz F, Soudi S, Kordi MR, Hashemi SM. Combined exercise training reduces IFN-gamma and IL-17 levels in the plasma and the supernatant of peripheral blood mononuclear cells in women with multiple sclerosis. Int Immunopharmacol. 2010 Nov;10(11):1415-9. doi: 10.1016/j.intimp.2010.08.008. Epub 2010 Aug 24.

Reference Type BACKGROUND
PMID: 20797460 (View on PubMed)

Motl RW, Sandroff BM, Kwakkel G, Dalgas U, Feinstein A, Heesen C, Feys P, Thompson AJ. Exercise in patients with multiple sclerosis. Lancet Neurol. 2017 Oct;16(10):848-856. doi: 10.1016/S1474-4422(17)30281-8. Epub 2017 Sep 12.

Reference Type BACKGROUND
PMID: 28920890 (View on PubMed)

Rampello A, Franceschini M, Piepoli M, Antenucci R, Lenti G, Olivieri D, Chetta A. Effect of aerobic training on walking capacity and maximal exercise tolerance in patients with multiple sclerosis: a randomized crossover controlled study. Phys Ther. 2007 May;87(5):545-55. doi: 10.2522/ptj.20060085. Epub 2007 Apr 3.

Reference Type BACKGROUND
PMID: 17405806 (View on PubMed)

Schulz KH, Gold SM, Witte J, Bartsch K, Lang UE, Hellweg R, Reer R, Braumann KM, Heesen C. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J Neurol Sci. 2004 Oct 15;225(1-2):11-8. doi: 10.1016/j.jns.2004.06.009.

Reference Type BACKGROUND
PMID: 15465080 (View on PubMed)

Sternberg Z. Promoting sympathovagal balance in multiple sclerosis; pharmacological, non-pharmacological, and surgical strategies. Autoimmun Rev. 2016 Feb;15(2):113-23. doi: 10.1016/j.autrev.2015.04.012. Epub 2015 May 3.

Reference Type BACKGROUND
PMID: 25945428 (View on PubMed)

Studer V, Rocchi C, Motta C, Lauretti B, Perugini J, Brambilla L, Pareja-Gutierrez L, Camera G, Barbieri FR, Marfia GA, Centonze D, Rossi S. Heart rate variability is differentially altered in multiple sclerosis: implications for acute, worsening and progressive disability. Mult Scler J Exp Transl Clin. 2017 Apr 5;3(2):2055217317701317. doi: 10.1177/2055217317701317. eCollection 2017 Apr-Jun.

Reference Type BACKGROUND
PMID: 28607756 (View on PubMed)

van den Berg M, Dawes H, Wade DT, Newman M, Burridge J, Izadi H, Sackley CM. Treadmill training for individuals with multiple sclerosis: a pilot randomised trial. J Neurol Neurosurg Psychiatry. 2006 Apr;77(4):531-3. doi: 10.1136/jnnp.2005.064410.

Reference Type BACKGROUND
PMID: 16543538 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

NeuromedIRCCS

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Exercise in Multiple Sclerosis
NCT02716701 TERMINATED NA