ECRB Tendinopathy: Needling ± PRP After Failure of Rehabilitation
NCT ID: NCT03987256
Last Updated: 2021-09-20
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
58 participants
INTERVENTIONAL
2020-01-01
2022-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
During the reeducation, the clinical evaluation will be monitored and reported as in a case series.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
PRP Versus Saline in Lateral Epicondylitis
NCT05125705
Comparison of Platelet Rich Plasma and Alternative Therapies for the Treatment of Tennis Elbow (Lateral Epicondylitis)
NCT01668953
Leukocyte-Poor Platelet-Rich Plasma Reduces Pain Symptoms in the Treatment of the Lateral Epicondylitis
NCT06854666
The Effect of Platelet Rich Plasma on Lateral Epicondylitis
NCT01851044
Efficacy of Injection Therapy for Lateral Epicondylosis
NCT01476605
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The success rate of ESWT for lateral epicondylitis depends mainly of the protocol used. Especially, poor results were observed with too low energy. Both radial and focal ESWT are effective, and focal ESWT has been showed as being as effective as surgical tenotomy.
Concerning infiltrative therapies, it has been well established that corticosteroids are efficient in short-term but deleterious in long-term, likely for degenerative purposes. Prolotherapy, autologous blood, and botulinic toxin injections and others infiltrative therapies are less studied and therefore nowadays not clearly supported by the literature. Stem cells might be an alternative in the future.
Platelet-rich-plasma (PRP) is nowadays widely used, but the results of clinical trials are discordant. Even if the superiority of PRP over corticosteroids is well established, the superiority of PRP on tendon needling or peppering is still controversial. Martin et al. 2019 found in a partially blinded randomized controlled trial (RCT) involving 71 patients no clinical differences at 6 months of follow-up between 2 sessions of peppering with saline + local anesthetic and PRP + local anesthetic. In a similar unblended RCT involving 50 patients, Schöffl et al. 2017 found no clinical differences at 6 months of follow-up. Montalvan et al. 2016 found in a RCT involving 50 patients between 2 infiltrations of PRP and saline no clinical differences at 6 months of follow-up. Rehabilitation was not allowed during the trial and the tendon was not peppered. Mishra et al. found in a blinded RCT involving 119 patients a positive clinical effect of PRP on saline solution, using a single injection with peppering. Behera et al. found similar results in a small RCT on 25 patients.
Some factors has been advocated to influence the outcomes. The most relevant are: direct mechanic action of the needle and fenestration (peppering) technique, number of PRP injections, cells count (platelets, white blood- and red blood cells), activation of the platelets, concomitant local anesthetic use, peri-interventional use of NSAIDs and corticosteroids, concomitant rehabilitation or a contraria immobilization. Whether the positive results observed into the previous selected studies are due to either PRP, peppering, or any of the confounding factors described above remains to debate.
The first aim of this study is to determine the proportion of patients, which would need an infiltrative technique after a proper rehabilitation protocol involving physical therapies, orthotics and ESWT. Our second aim is to establish whether PRP as adjuvant therapy to peppering would increase clinical outcomes.
Details of sample size calculation (58 overall, 29 per group):
58 patients are required to have a 95% chance of detecting, as significant at the 5% level, an increase in the primary outcome measure from 50 in the control group to 60 in the experimental group, considering a standard deviation of 10% and a dropout rate of 10%. After the inclusion of 40 patients, the standard deviation will be re-evaluated and the sample size corrected accordingly if necessary.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
ECRB needling with adjuvant PRP infiltration
First step: rehabilitation protocol during 3 months including focal shockwave therapy
Second step: one single tendon needling with PRP
Initial rehabilitation protocol
During 12 weeks, under kinesitherapist guidance, patients will perform daily eccentric stretching and strengthening of the ECRB and periscapular musculature, manual therapies, and kinesiotaping. They will also use orthotics after 6 weeks if kinesiotaping is not effective. At weeks 1-5, patients will undergo weekly ultrasound-guided focused shockwave therapy under the following protocol: 0,15- 0,30mJ/mm2 (the highest energy flux the patient can well tolerate), 1500 shocks at 5Hz at the origin of common extensor or flexor tendon.
Needling with PRP
In case of failure of proper rehabilitation and shockwave therapy, patients will have a block of the radialis nerve just above the arcade of Frohse with 1 ml of procaine 2%. Then, a single needling of the ECRB enthesis (peppering technique) will be performed as follow: , ultrasound-guided, 25 repetitions with a 20 gauge needle. At the end of the procedure, the lesion will be fulfilled with PRP.
Details of PRP preparation (ACP Arthrex): 15 ml of blood, no activators or anticoagulants, poor in white blood cells (the last mm of buffy coat above the red blood cells pellet is not collected).
Excentric stretching and strengthening, as well as orthotics or kinesiotaping will be continued as long as symptoms persists during the 6 first months after the needling procedure.
ECRB needling with adjuvant NaCl 0.9% infiltration
First step: rehabilitation protocol during 3 months including focal shockwave therapy
Second step: one single tendon needling with Saline solution
Initial rehabilitation protocol
During 12 weeks, under kinesitherapist guidance, patients will perform daily eccentric stretching and strengthening of the ECRB and periscapular musculature, manual therapies, and kinesiotaping. They will also use orthotics after 6 weeks if kinesiotaping is not effective. At weeks 1-5, patients will undergo weekly ultrasound-guided focused shockwave therapy under the following protocol: 0,15- 0,30mJ/mm2 (the highest energy flux the patient can well tolerate), 1500 shocks at 5Hz at the origin of common extensor or flexor tendon.
Needling with saline solution
In case of failure of proper rehabilitation and shockwave therapy, patients will have a block of the radialis nerve just above the arcade of Frohse with 1 ml of procaine 2%. Then, a single needling of the ECRB enthesis (peppering technique) will be performed as follow: , ultrasound-guided, 25 repetitions with a 20 gauge needle. At the end of the procedure, the lesion will be fulfilled with saline solution.
Excentric stretching and strengthening, as well as orthotics or kinesiotaping will be continued as long as symptoms persists during the 6 first months after the needling procedure.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Initial rehabilitation protocol
During 12 weeks, under kinesitherapist guidance, patients will perform daily eccentric stretching and strengthening of the ECRB and periscapular musculature, manual therapies, and kinesiotaping. They will also use orthotics after 6 weeks if kinesiotaping is not effective. At weeks 1-5, patients will undergo weekly ultrasound-guided focused shockwave therapy under the following protocol: 0,15- 0,30mJ/mm2 (the highest energy flux the patient can well tolerate), 1500 shocks at 5Hz at the origin of common extensor or flexor tendon.
Needling with PRP
In case of failure of proper rehabilitation and shockwave therapy, patients will have a block of the radialis nerve just above the arcade of Frohse with 1 ml of procaine 2%. Then, a single needling of the ECRB enthesis (peppering technique) will be performed as follow: , ultrasound-guided, 25 repetitions with a 20 gauge needle. At the end of the procedure, the lesion will be fulfilled with PRP.
Details of PRP preparation (ACP Arthrex): 15 ml of blood, no activators or anticoagulants, poor in white blood cells (the last mm of buffy coat above the red blood cells pellet is not collected).
Excentric stretching and strengthening, as well as orthotics or kinesiotaping will be continued as long as symptoms persists during the 6 first months after the needling procedure.
Needling with saline solution
In case of failure of proper rehabilitation and shockwave therapy, patients will have a block of the radialis nerve just above the arcade of Frohse with 1 ml of procaine 2%. Then, a single needling of the ECRB enthesis (peppering technique) will be performed as follow: , ultrasound-guided, 25 repetitions with a 20 gauge needle. At the end of the procedure, the lesion will be fulfilled with saline solution.
Excentric stretching and strengthening, as well as orthotics or kinesiotaping will be continued as long as symptoms persists during the 6 first months after the needling procedure.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Failure to rehabilitation program including shockwave therapy defined as the need for the patient undergoing additional therapies
Exclusion Criteria
* Clinical presence of cervicobrachialgia, or pain irradiating into the hand
* Corticosteroids: oral intake or infiltration on the last 3 months
* Proximal radius fracture history
* Active inflammatory rheumatic disorders
* Diabetes mellitus
* Immunocompromized status
* Allergy to local anesthetics
* Bleeding disorders or current anticoagulation therapy
* Other clinically significant concomitant disease states (e.g., renal failure, hepatic dysfunction, cardiopulmonary significant insufficiency, etc.)
* Known or suspected non-compliance, drug or alcohol abuse
* Inability to follow the procedures of the study, e.g. due to language problems, psychological disorders, dementia, etc. of the participant
* Participation in another study with investigational drug within the 30 days preceding and during the present study
* Previous enrolment into the current study
* Enrolment of the investigator, his/her family members, employees and other dependent persons
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Adrien Schwitzguebel
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Adrien Schwitzguebel
Independent physician
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Adrien Schwitzguébel, MD
Role: PRINCIPAL_INVESTIGATOR
Hôpital de La Providence
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hôpital La Providence, Sports Medicine
Neuchâtel, , Switzerland
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Gerdesmeyer L, Mittermayr R, Fuerst M, Al Muderis M, Thiele R, Saxena A, Gollwitzer H. Current evidence of extracorporeal shock wave therapy in chronic Achilles tendinopathy. Int J Surg. 2015 Dec;24(Pt B):154-9. doi: 10.1016/j.ijsu.2015.07.718. Epub 2015 Aug 29.
Park JW, Hwang JH, Choi YS, Kim SJ. Comparison of Therapeutic Effect of Extracorporeal Shock Wave in Calcific Versus Noncalcific Lateral Epicondylopathy. Ann Rehabil Med. 2016 Apr;40(2):294-300. doi: 10.5535/arm.2016.40.2.294. Epub 2016 Apr 25.
Coombes BK, Bisset L, Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet. 2010 Nov 20;376(9754):1751-67. doi: 10.1016/S0140-6736(10)61160-9. Epub 2010 Oct 21.
Houck DA, Kraeutler MJ, Thornton LB, McCarty EC, Bravman JT. Treatment of Lateral Epicondylitis With Autologous Blood, Platelet-Rich Plasma, or Corticosteroid Injections: A Systematic Review of Overlapping Meta-analyses. Orthop J Sports Med. 2019 Mar 14;7(3):2325967119831052. doi: 10.1177/2325967119831052. eCollection 2019 Mar.
Gautam VK, Verma S, Batra S, Bhatnagar N, Arora S. Platelet-rich plasma versus corticosteroid injection for recalcitrant lateral epicondylitis: clinical and ultrasonographic evaluation. J Orthop Surg (Hong Kong). 2015 Apr;23(1):1-5. doi: 10.1177/230949901502300101.
Dong W, Goost H, Lin XB, Burger C, Paul C, Wang ZL, Kong FL, Welle K, Jiang ZC, Kabir K. Injection therapies for lateral epicondylalgia: a systematic review and Bayesian network meta-analysis. Br J Sports Med. 2016 Aug;50(15):900-8. doi: 10.1136/bjsports-2014-094387. Epub 2015 Sep 21.
Sims SE, Miller K, Elfar JC, Hammert WC. Non-surgical treatment of lateral epicondylitis: a systematic review of randomized controlled trials. Hand (N Y). 2014 Dec;9(4):419-46. doi: 10.1007/s11552-014-9642-x.
Lai WC, Erickson BJ, Mlynarek RA, Wang D. Chronic lateral epicondylitis: challenges and solutions. Open Access J Sports Med. 2018 Oct 30;9:243-251. doi: 10.2147/OAJSM.S160974. eCollection 2018.
Imam MA, Holton J, Horriat S, Negida AS, Grubhofer F, Gupta R, Narvani A, Snow M. A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in tendon pathology. SICOT J. 2017;3:58. doi: 10.1051/sicotj/2017039. Epub 2017 Oct 9.
Mi B, Liu G, Zhou W, Lv H, Liu Y, Wu Q, Liu J. Platelet rich plasma versus steroid on lateral epicondylitis: meta-analysis of randomized clinical trials. Phys Sportsmed. 2017 May;45(2):97-104. doi: 10.1080/00913847.2017.1297670. Epub 2017 Mar 3.
Martin JI, Atilano L, Merino J, Gonzalez I, Iglesias G, Areizaga L, Bully P, Grandes G, Andia I. Platelet-rich plasma versus lidocaine as tenotomy adjuvants in people with elbow epicondylopathy: a randomized controlled trial. J Orthop Surg Res. 2019 Apr 23;14(1):109. doi: 10.1186/s13018-019-1153-6.
Schoffl V, Willauschus W, Sauer F, Kupper T, Schoffl I, Lutter C, Gelse K, Dickschas J. Autologous Conditioned Plasma Versus Placebo Injection Therapy in Lateral Epicondylitis of the Elbow: A Double Blind, Randomized Study. Sportverletz Sportschaden. 2017 Jan;31(1):31-36. doi: 10.1055/s-0043-101042. Epub 2017 Feb 21.
Montalvan B, Le Goux P, Klouche S, Borgel D, Hardy P, Breban M. Inefficacy of ultrasound-guided local injections of autologous conditioned plasma for recent epicondylitis: results of a double-blind placebo-controlled randomized clinical trial with one-year follow-up. Rheumatology (Oxford). 2016 Feb;55(2):279-85. doi: 10.1093/rheumatology/kev326. Epub 2015 Sep 8.
Mishra AK, Skrepnik NV, Edwards SG, Jones GL, Sampson S, Vermillion DA, Ramsey ML, Karli DC, Rettig AC. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014 Feb;42(2):463-71. doi: 10.1177/0363546513494359. Epub 2013 Jul 3.
Behera P, Dhillon M, Aggarwal S, Marwaha N, Prakash M. Leukocyte-poor platelet-rich plasma versus bupivacaine for recalcitrant lateral epicondylar tendinopathy. J Orthop Surg (Hong Kong). 2015 Apr;23(1):6-10. doi: 10.1177/230949901502300102.
Kaux JF, Emonds-Alt T. The use of platelet-rich plasma to treat chronic tendinopathies: A technical analysis. Platelets. 2018 May;29(3):213-227. doi: 10.1080/09537104.2017.1336211. Epub 2017 Jul 31.
Schwitzguebel AJ, Bogoev M, Nikolov V, Ichane F, Ladermann A. Tennis elbow, study protocol for a randomized clinical trial: needling with and without platelet-rich plasma after failure of up-to-date rehabilitation. J Orthop Surg Res. 2020 Oct 7;15(1):462. doi: 10.1186/s13018-020-01998-8.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ECRB_Conservative
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.