Niacin Supplementation in Healthy Controls and Mitochondrial Myopathy Patients
NCT ID: NCT03973203
Last Updated: 2023-05-11
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
15 participants
INTERVENTIONAL
2014-06-01
2018-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In this study, the form of vitamin B3, niacin, was used to activate dysfunctional mitochondria and to rescue signs of mitochondrial myopathy. Of the vitamin B3 forms, niacin, is employed, because it has been used in large doses to treat hypercholesterolemia patients, and has a proven safety record in humans. Phenotypically similar mitochondrial myopathy patients are studied, as the investigator's previous expertise indicates that similar presenting phenotypes predict uniform physiological and clinical responses to interventions, despite varying genetic backgrounds. Patients either with sporadic single mtDNA deletions or a mutation in a Twinkle gene causing multiple mtDNA deletions were recruited. In addition, for every patient, two gender- and age-matched healthy controls are recruited. Clinical examinations and collection of muscle biopsies are performed at the time points 0, 4 and 10 months (patients) or at 0 and 4 months (controls). Fasting blood samples are collected every second week until 4 months and thereafter every six weeks until the end of the study. The effects of niacin on disease markers, muscle mitochondrial biogenesis, muscle strength and the metabolism of the whole body are studied in patients and healthy controls.
The hypothesis is that an NAD+ precursor, niacin, will increase intracellular NAD+ levels, improve mitochondrial biogenesis and alleviate the symptoms of mitochondrial myopathy in humans.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
NiaMIT Continuation With Early-stage Mitochondrial Myopathy Patients
NCT04538521
The Effects of Exercise Versus Inactivity on People With Mitochondrial Muscle Disease
NCT00457314
Pilot Compassionate Use Study of Thioctic Acid Treatment in Mitochondrial Myopathy
NCT00004770
Resveratrol Supplementation in Patients With Mitochondrial Myopathies and Skeletal Muscle Fatty Acid Oxidation Disorders
NCT03728777
Exploratory Study of NS-065/NCNP-01 in DMD
NCT02081625
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Niacin in controls
The arm includes healthy controls supplemented with niacin.
Niacin
The dose for a slow-released form of niacin will be 750-1000 mg/day. The daily niacin dose, 250 mg/day, is gradually escalated by 250 mg/month so that the full dose is reached after 3 months. The intervention time with the full niacin dose is 1 and 7 months for controls and patients, respectively, and subsequently total intervention time 4 and 10 months, respectively. At the end of the study, the daily dose will be decreased by 250 mg/month rate.
Niacin in mitochondrial myopathy patients
The arm includes mitochondrial myopathy patients supplemented with niacin.
Niacin
The dose for a slow-released form of niacin will be 750-1000 mg/day. The daily niacin dose, 250 mg/day, is gradually escalated by 250 mg/month so that the full dose is reached after 3 months. The intervention time with the full niacin dose is 1 and 7 months for controls and patients, respectively, and subsequently total intervention time 4 and 10 months, respectively. At the end of the study, the daily dose will be decreased by 250 mg/month rate.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Niacin
The dose for a slow-released form of niacin will be 750-1000 mg/day. The daily niacin dose, 250 mg/day, is gradually escalated by 250 mg/month so that the full dose is reached after 3 months. The intervention time with the full niacin dose is 1 and 7 months for controls and patients, respectively, and subsequently total intervention time 4 and 10 months, respectively. At the end of the study, the daily dose will be decreased by 250 mg/month rate.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Age and gender matched healthy controls for every patient
3. Agreed to avoid vitamin supplementation or nutritional products with vitamin B3 forms 14 days prior to the enrollment and during the study
4. Written, informed consent to participate in the study
Exclusion Criteria
2. Pregnancy or breast-feeding at any time of the trial
3. Malignancy that requires continuous treatment
4. Unstable heart disease
5. Severe kidney disease requiring treatment
6. Severe encephalopathy
7. Regular usage of intoxicants
17 Years
70 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Helsinki University Central Hospital
OTHER
Institute for Molecular Medicine
OTHER
University of Iowa
OTHER
University of Helsinki
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Anu Wartiovaara
Academy Professor, Professor of Clinical Molecular Medicine
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Anu Suomalainen Wartiovaara, MD,PhD
Role: PRINCIPAL_INVESTIGATOR
Research Programs Unit, University of Helsinki, Helsinki, Finland
References
Explore related publications, articles, or registry entries linked to this study.
Suomalainen A, Battersby BJ. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol. 2018 Feb;19(2):77-92. doi: 10.1038/nrm.2017.66. Epub 2017 Aug 9.
Ylikallio E, Suomalainen A. Mechanisms of mitochondrial diseases. Ann Med. 2012 Feb;44(1):41-59. doi: 10.3109/07853890.2011.598547. Epub 2011 Aug 2.
Rajman L, Chwalek K, Sinclair DA. Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell Metab. 2018 Mar 6;27(3):529-547. doi: 10.1016/j.cmet.2018.02.011.
Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsstrom S, Pasila L, Velagapudi V, Carroll CJ, Auwerx J, Suomalainen A. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014 Jun;6(6):721-31. doi: 10.1002/emmm.201403943.
Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA, Li W, Leoni V, Schon EA, Dantzer F, Auwerx J, Viscomi C, Zeviani M. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014 Jun 3;19(6):1042-9. doi: 10.1016/j.cmet.2014.04.001. Epub 2014 May 8.
Guyton JR, Bays HE. Safety considerations with niacin therapy. Am J Cardiol. 2007 Mar 19;99(6A):22C-31C. doi: 10.1016/j.amjcard.2006.11.018. Epub 2006 Nov 28.
Vosper H. Niacin: a re-emerging pharmaceutical for the treatment of dyslipidaemia. Br J Pharmacol. 2009 Sep;158(2):429-41. doi: 10.1111/j.1476-5381.2009.00349.x. Epub 2009 Jul 20.
Ahola S, Auranen M, Isohanni P, Niemisalo S, Urho N, Buzkova J, Velagapudi V, Lundbom N, Hakkarainen A, Muurinen T, Piirila P, Pietilainen KH, Suomalainen A. Modified Atkins diet induces subacute selective ragged-red-fiber lysis in mitochondrial myopathy patients. EMBO Mol Med. 2016 Nov 2;8(11):1234-1247. doi: 10.15252/emmm.201606592. Print 2016 Nov.
Suomalainen A, Elo JM, Pietilainen KH, Hakonen AH, Sevastianova K, Korpela M, Isohanni P, Marjavaara SK, Tyni T, Kiuru-Enari S, Pihko H, Darin N, Ounap K, Kluijtmans LA, Paetau A, Buzkova J, Bindoff LA, Annunen-Rasila J, Uusimaa J, Rissanen A, Yki-Jarvinen H, Hirano M, Tulinius M, Smeitink J, Tyynismaa H. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011 Sep;10(9):806-18. doi: 10.1016/S1474-4422(11)70155-7. Epub 2011 Aug 3.
Nikkanen J, Forsstrom S, Euro L, Paetau I, Kohnz RA, Wang L, Chilov D, Viinamaki J, Roivainen A, Marjamaki P, Liljenback H, Ahola S, Buzkova J, Terzioglu M, Khan NA, Pirnes-Karhu S, Paetau A, Lonnqvist T, Sajantila A, Isohanni P, Tyynismaa H, Nomura DK, Battersby BJ, Velagapudi V, Carroll CJ, Suomalainen A. Mitochondrial DNA Replication Defects Disturb Cellular dNTP Pools and Remodel One-Carbon Metabolism. Cell Metab. 2016 Apr 12;23(4):635-48. doi: 10.1016/j.cmet.2016.01.019. Epub 2016 Feb 25.
Khan NA, Nikkanen J, Yatsuga S, Jackson C, Wang L, Pradhan S, Kivela R, Pessia A, Velagapudi V, Suomalainen A. mTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. Cell Metab. 2017 Aug 1;26(2):419-428.e5. doi: 10.1016/j.cmet.2017.07.007.
Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MS, Haimilahti K, Piirila P, Lundbom N, Taskinen MR, Brenner C, Velagapudi V, Pietilainen KH, Suomalainen A. Niacin Cures Systemic NAD+ Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab. 2020 Jun 2;31(6):1078-1090.e5. doi: 10.1016/j.cmet.2020.04.008. Epub 2020 May 7.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NiaMIT_0001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.