Feasibility and Impact of Volume Targeted Ventilation in the Delivery Room
NCT ID: NCT03938532
Last Updated: 2025-02-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
NA
20 participants
INTERVENTIONAL
2019-07-11
2024-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
With the proposed study, in Phase I, the investigators aim to demonstrate that measuring TV in intubated infants receiving PPV via PLV is feasible. The investigators also seek to demonstrate that with PLV, TV is highly variable in the first few hours of life, even with the same peak inspiratory pressures (PiP) due to rapidly changing pulmonary compliance. A successful Phase I will demonstrate that measuring TV is feasible in the DR, and with information on real time actual TV achieved during PPV, it is possible to target the TV for a goal TV by adjusting the PiP provided.
Phase II will be a pilot randomized control trial to demonstrate feasibility of VTV compared to PLV. The investigators will also aim to understand the pulmonary mechanics and physiology during VTV. A successful Phase II will demonstrate VTV is feasible, is associated with stable TV, decreased peak inspiratory pressure and oxygen needs compared to PLV, and not associated with increased complications compared to PLV. It will thereby justify a larger randomized control trial with enough power to evaluate the efficacy of VTV in reducing BPD and other long term pulmonary morbidities for preterm infants.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Role of Circuit Flow During Mechanical Ventilation of Neonates
NCT03306524
Pulmonary Volume Changes During Synchonized Noninvasive Positive Pressure Ventilation
NCT07237139
Nasal Intermittent Positive Pressure Ventilation in Premature Infants (NIPPV)
NCT00433212
Noninvasive NAVA Versus NIPPV in Low Birthweight Premature Infants
NCT03137225
Randomized Control Trial: Synchronized Non-invasive Positive Pressure Ventilation Versus Non Synchronized Non Invasive Positive Pressure Ventilation in Extremely Low Birth Weight Infants
NCT03613987
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The pathogenesis of BPD is multifactorial, with lung injury from mechanical ventilation, oxygen toxicity, and antenatal or postnatal infections, all leading to lung inflammation which play a key role in the development of BPD. Delivery room (DR) management of preterm infants during the initial resuscitation is critical, and can have a significant impact on development of BPD. Studies have demonstrated that DR respiratory management with invasive respiratory support and higher oxygen content is associated with increased risk of death and/or BPD compared to non-invasive ventilation and lower oxygen resuscitation, respectively. Preterm infants stabilized on continuous positive airway pressure (CPAP) with prudent titration of supplemental oxygen in the delivery room to achieve targeted oxygen saturations have demonstrated improved rates of BPD.
CURRENT STANDARD OF PRACTICE Current DR practice for intubated preterm infants focuses on pressure limited ventilation using either a self-inflating bag or a T-piece resuscitator where the provider regulates the inflation pressure and inflation time, but not the tidal volume.
As an infant transitions to extra uterine life, pulmonary compliance changes rapidly. Total pulmonary compliance is a composite of the lung and chest wall compliances. In preterm infants, the chest wall is composed primarily of cartilage rendering the chest wall highly compliant, and as a result, the neonatal lung is more prone to collapse. Preterm lungs additionally have reduced surfactant production which further decreases lung compliance. Upon initiation of positive pressure ventilation (PPV), the rapid fluid shift in the immediate newborn period can also result in swift changes in a newborn's pulmonary compliance. Provision of maternal antenatal steroids as well as surfactant replacement therapies can positively impact the preterm pulmonary outcomes. For these preterm infants, tidal volumes generated during PPV is directly proportional to the lung compliance as demonstrated by the formula: Cdyn=VT/(PiP-PEEP), where, VT = tidal volume; PIP=peak inspiratory pressure; and PEEP=positive end-expiratory pressure.
Hence, with PLV the exact same pressure due to rapidly changing lung compliance may lead to under-inflation or over-inflation of the lungs.
Once admitted in the NICU, providing VTV to preterm infants is standard practice in the investigators NICU, with inter-provider preference over volume versus pressure ventilation, with no true consensus. However, in the DR the practice continues to be utilizing PLV and with the proposed study, the investigators seek to provide physiologically more appropriate VTV to the preterm infants right from the birth in the DR.
SIGNIFICANCE With rapidly changing lung compliance in the immediate neonatal transition phase, PLV can lead to significant variability in the delivered TV. Recent reports suggests that pressure limited resuscitation devices routinely used in the delivery room are capable of tripling the intended TV while providing PPV in a newborn manikin x. Large TV can lead to volutrauma, which is associated with adverse pulmonary outcomes. A study in preterm lambs showed as few as six large tidal volume breaths at birth can lead to acute lung injury and blunt the effect of subsequent surfactant treatment. Ventilation with large breaths may cause gross overexpansion of regions that are forced open, leaving major parts of the lung blocked by fluid and unexpanded, and such regional over distension can be expected to cause epithelial and microvascular injury and pulmonary edema. The resultant pulmonary edema may make the lung more susceptible to further volutrauma during conventional mechanical ventilation. Several animal studies have demonstrated that PPV with TV more than 8 mL/kg causes lung inflammation and lung injury. Additionally, animal and human studies have demonstrated that excessive TV delivery during PPV in the delivery room causes brain inflammation and injury. Likewise, recent meta-analysis data demonstrate infants ventilated using volume targeted ventilation (VTV) modes reduce rates of death or BPD, pneumothoraces, hypocarbia, severe cranial ultrasound pathologies and reduce the duration of ventilation compared with infants ventilated using PLV modes. The risk of lung injury is in all likelihood related to the magnitude of the volutrauma at birth, and therefore ventilation immediately after birth needs to be very gentle.
Without information about TV in the DR and rapidly changing lung compliance, PLV may lead to volutrauma. But no study has specifically evaluated the ability to measure TV provided in intubated infants in the DR or aimed at performing VTV in the DR while assessing its potential role in reducing lung injury.
INNOVATION With recent advances in technology and ability to measure small TV at the endotracheal tube (ET) level with the help of flow sensors, TV can be measured accurately at the ET tube level and volume targeted ventilation (VTV) becomes a possible alternative method of ventilating preterm infants. For the study, infants will have a flow sensor placed in series between the ETT and pressure generating device (T-piece resuscitator, self-inflating bag). The flow sensor will be connected to Respironics NM3 monitor (Philips Healthcare, Eindhoven, Netherlands) to measure the breath to breath TV. The flow sensor adds less than 1 mL of airway dead space volume (Vd) for neonatal sensors (ETT size of 2.5-4 mm). Phase 1 of the study will look into the feasibility of measuring TV in preterm infants. As some of the smallest very low birth weight (VLBW) infants may weight as less as 500gm, goal TV range of 4-6ml/kg will be equal to 2ml-3ml per breath. No study has specifically looked into the ability of measuring such small tidal volume, and hence this feasibility study is of prime importance.
In Phase 2, by using the information of measured TV at the ETT level, the provider can quickly regulate the peak pressure delivered to the infant to achieve a goal TV of 4-6 ml/kg. The provider will be trained to increase or decrease the pressures, by following a strict protocol to ensure the TV remains at goal during neonatal resuscitation. As soon as the infant is stable, the infant will be transitioned to a ventilator with volume targeting capabilities. With stable lung expansion, infants receiving VTV will receive goal TV more consistently, will have reduced incidence of atelectotrauma, volutrauma and overall reduced lung injury with lesser long term pulmonary morbidities.
With the proposed study, in Phase I, the investigators aim to demonstrate that measuring TV in the DR is feasible and is highly variable in the first few hours of life, even with the same peak inspiratory pressures due to rapidly changing pulmonary compliance. A successful Phase I will provide evidence that providing consistent VTV is possible in the DR by adjusting the PiP. In Phase II, the investigators aim to obtain pilot data assessing the feasibility of VTV in the DR, and attempt to understand the pulmonary mechanics and physiology during VTV. A successful pilot study will demonstrate that VTV is feasible; is associated with consistent delivered TV; lower PiP and oxygen needs for the patients; thereby justifying a larger randomized control trial to evaluate the efficacy of VTV in reducing BPD and long term pulmonary morbidities.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Control Arm
Infant will receive pressure regulated breaths, 40-60 breaths/min, PiP of 20-24cm of water as recommended by 2017 Neonatal Resuscitation Program (NRP) guidelines. Reading of the TV will be blinded from the providers as in routine clinical situations
Tidal Volume Measurement using the Philips Respironics NM3 monitor
Tidal Volume Measurement using the Philips Respironics NM3 monitor
Intervention Arm
Infants in the intervention arm will receive VTV following intubation. Peak inspiratory pressure (PiP) provided via T-piece resuscitator will be visible to the providers, and the provider can regulate the PiP to achieve the desired TV goal (4-6 ml/kg), at a rate of 40-60 breaths/min
Volume Targeted Ventilation (VTV) using the Philips Respironics NM3 monitor
Infants in the intervention arm will receive VTV following intubation. Peak inspiratory pressure (PiP) provided via T-piece resuscitator will be visible to the providers, and the provider can regulate the PiP to achieve the desired TV goal (4-6 ml/kg), at a rate of 40-60 breaths/min
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Volume Targeted Ventilation (VTV) using the Philips Respironics NM3 monitor
Infants in the intervention arm will receive VTV following intubation. Peak inspiratory pressure (PiP) provided via T-piece resuscitator will be visible to the providers, and the provider can regulate the PiP to achieve the desired TV goal (4-6 ml/kg), at a rate of 40-60 breaths/min
Tidal Volume Measurement using the Philips Respironics NM3 monitor
Tidal Volume Measurement using the Philips Respironics NM3 monitor
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Infant born at Baystate Medical Center
* Requiring intubation and positive pressure ventilation in the delivery room
* Parental Consent
Exclusion Criteria
* Known congenital or cardiac abnormalities or discovered in the immediate neonatal period.
5 Minutes
60 Minutes
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Baystate Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Ruben
Associate Professor of Pediatrics
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Ruben Vaidya, MD
Role: PRINCIPAL_INVESTIGATOR
Baystate Medical Center
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Baystate Medical Center
Springfield, Massachusetts, United States
Countries
Review the countries where the study has at least one active or historical site.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
BH-19-006
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.