Treating Persistent Post-concussion Symptoms With Exercise
NCT ID: NCT03895450
Last Updated: 2023-10-23
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
52 participants
INTERVENTIONAL
2019-05-24
2023-02-20
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Post-Concussion Aerobic Exercise
NCT04539509
Aerobic Exercise for Concussion
NCT02959216
The Effect of a Sub-symptom Threshold Aerobic Exercise Program on Recovery in Concussed Athletes
NCT03865433
Aerobic Training for Management of Post-Concussion Syndrome in Adolescents
NCT02035579
Post-acute Structured Exercise Following Sport Concussion
NCT02969824
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Aerobic Exercise Protocol (AEP)
Symptom threshold will be determined at baseline and repeated every 3 weeks using the Buffalo Concussion Treadmill Test. Briefly, there will be an initial 4min warm up at 1.7mph. The protocol will start with treadmill speed se to 3.3 mph and 0.0% incline. Each subsequent minute, the incline will increase by 1.0% to a max of 15%. At 15% grade, if the participant is still able to continue, treadmill speed will increase by 0.4mph each minute. Heart rate (HR) and rating of perceived excretion (RPE Borg scale) will be measured every minute. The test will be terminated upon symptom exacerbation at which time HR and RPE will be recorded. Every 3 weeks the symptom threshold test will be repeated for all participants and exercise prescription will be adjusted accordingly.
Aerobic Exercise Protocol
Participants randomized to AEP will be asked to exercise 30 minutes per day or until symptom exacerbation, 5 days per week either at home, outdoors or at a fitness facility of choice. The assigned exercise prescription target will be 70-80% of the maximum HR achieved during the treadmill test. HR monitors will be provided to monitor exercise intensity.
Stretching Protocol (SP)
The exercise testing for the stretching protocol to determine exercise prescription will be the same as described above.
Aerobic Exercise Protocol
Participants randomized to AEP will be asked to exercise 30 minutes per day or until symptom exacerbation, 5 days per week either at home, outdoors or at a fitness facility of choice. The assigned exercise prescription target will be 70-80% of the maximum HR achieved during the treadmill test. HR monitors will be provided to monitor exercise intensity.
Stretching Protocol
Participants will follow a stretching protocol for 30 minutes a day, 5 days a week. Individuals in the SP group will be given a booklet explaining a low-impact breathing and stretching program developed at the University of Buffalo. All stretches will explained and demonstrated by a member of the study team prior to commencement of the program. Stretches focus on lower extremity muscles. During the protocol HR should be low as to not exceed 50% of age predicted max. A HR monitor will be worn during stretching.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Aerobic Exercise Protocol
Participants randomized to AEP will be asked to exercise 30 minutes per day or until symptom exacerbation, 5 days per week either at home, outdoors or at a fitness facility of choice. The assigned exercise prescription target will be 70-80% of the maximum HR achieved during the treadmill test. HR monitors will be provided to monitor exercise intensity.
Stretching Protocol
Participants will follow a stretching protocol for 30 minutes a day, 5 days a week. Individuals in the SP group will be given a booklet explaining a low-impact breathing and stretching program developed at the University of Buffalo. All stretches will explained and demonstrated by a member of the study team prior to commencement of the program. Stretches focus on lower extremity muscles. During the protocol HR should be low as to not exceed 50% of age predicted max. A HR monitor will be worn during stretching.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* mTBI occurrence from 3 months to 5 years from study start date
* Diagnosis of persistent post-concussion symptoms based on the ICD-10 criteria.
* Cleared for physical activity based on The Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) by treating physician
* exercise intolerance (inability to exercise at pre-injury intensity/duration due to acute presentation of symptoms)
Exclusion Criteria
* contraindications to MRI
* cardiopulmonary disorder
* chronic musculoskeletal condition
* psychiatric disorder other than depression and/or anxiety (i.e., schizophrenia, bipolar disorder)
* cancer
* pregnancy
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hotchkiss Brain Institute, University of Calgary
OTHER
University of Calgary
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Chantel T Debert, MD MSc FRCPC
Role: PRINCIPAL_INVESTIGATOR
University of Calgary
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Of Calgary
Calgary, Alberta, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Korley FK, Kelen GD, Jones CM, Diaz-Arrastia R. Emergency Department Evaluation of Traumatic Brain Injury in the United States, 2009-2010. J Head Trauma Rehabil. 2016 Nov/Dec;31(6):379-387. doi: 10.1097/HTR.0000000000000187.
Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, Kraus J, Coronado VG; WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med. 2004 Feb;(43 Suppl):28-60. doi: 10.1080/16501960410023732.
Coenen M, Cabello M, Umlauf S, Ayuso-Mateos JL, Anczewska M, Tourunen J, Leonardi M, Cieza A; PARADISE Consortium. Psychosocial difficulties from the perspective of persons with neuropsychiatric disorders. Disabil Rehabil. 2016;38(12):1134-45. doi: 10.3109/09638288.2015.1074729. Epub 2015 Aug 18.
Olesen J, Leonardi M. The burden of brain diseases in Europe. Eur J Neurol. 2003 Sep;10(5):471-7. doi: 10.1046/j.1468-1331.2003.00682.x.
Humphreys I, Wood RL, Phillips CJ, Macey S. The costs of traumatic brain injury: a literature review. Clinicoecon Outcomes Res. 2013 Jun 26;5:281-7. doi: 10.2147/CEOR.S44625. Print 2013.
Lange RT, Brickell TA, Kennedy JE, Bailie JM, Sills C, Asmussen S, Amador R, Dilay A, Ivins B, French LM. Factors influencing postconcussion and posttraumatic stress symptom reporting following military-related concurrent polytrauma and traumatic brain injury. Arch Clin Neuropsychol. 2014 Jun;29(4):329-47. doi: 10.1093/arclin/acu013. Epub 2014 Apr 9.
Waljas M, Iverson GL, Lange RT, Liimatainen S, Hartikainen KM, Dastidar P, Soimakallio S, Ohman J. Return to work following mild traumatic brain injury. J Head Trauma Rehabil. 2014 Sep-Oct;29(5):443-50. doi: 10.1097/HTR.0000000000000002.
Lange RT, Iverson GL, Rose A. Depression strongly influences postconcussion symptom reporting following mild traumatic brain injury. J Head Trauma Rehabil. 2011 Mar-Apr;26(2):127-37. doi: 10.1097/HTR.0b013e3181e4622a.
Mychasiuk R, Hehar H, Ma I, Candy S, Esser MJ. Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression. Eur J Neurosci. 2016 Oct;44(7):2407-2417. doi: 10.1111/ejn.13360. Epub 2016 Aug 31.
Hearing CM, Chang WC, Szuhany KL, Deckersbach T, Nierenberg AA, Sylvia LG. Physical Exercise for Treatment of Mood Disorders: A Critical Review. Curr Behav Neurosci Rep. 2016 Dec;3(4):350-359. doi: 10.1007/s40473-016-0089-y. Epub 2016 Oct 14.
Stroth S, Hille K, Spitzer M, Reinhardt R. Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychol Rehabil. 2009 Apr;19(2):223-43. doi: 10.1080/09602010802091183. Epub 2008 Jun 1.
Geneen LJ, Moore RA, Clarke C, Martin D, Colvin LA, Smith BH. Physical activity and exercise for chronic pain in adults: an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2017 Apr 24;4(4):CD011279. doi: 10.1002/14651858.CD011279.pub3.
Larun L, Brurberg KG, Odgaard-Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2017 Apr 25;4(4):CD003200. doi: 10.1002/14651858.CD003200.pub7.
Gurley JM, Hujsak BD, Kelly JL. Vestibular rehabilitation following mild traumatic brain injury. NeuroRehabilitation. 2013;32(3):519-28. doi: 10.3233/NRE-130874.
Zhang QW, Deng XX, Sun X, Xu JX, Sun FY. Exercise promotes axon regeneration of newborn striatonigral and corticonigral projection neurons in rats after ischemic stroke. PLoS One. 2013 Nov 19;8(11):e80139. doi: 10.1371/journal.pone.0080139. eCollection 2013.
Piao CS, Stoica BA, Wu J, Sabirzhanov B, Zhao Z, Cabatbat R, Loane DJ, Faden AI. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis. 2013 Jun;54:252-63. doi: 10.1016/j.nbd.2012.12.017. Epub 2013 Jan 8.
Molteni R, Zheng JQ, Ying Z, Gomez-Pinilla F, Twiss JL. Voluntary exercise increases axonal regeneration from sensory neurons. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8473-8. doi: 10.1073/pnas.0401443101. Epub 2004 May 24.
Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007 Sep;30(9):464-72. doi: 10.1016/j.tins.2007.06.011. Epub 2007 Aug 31.
Griesbach GS, Hovda DA, Gomez-Pinilla F. Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res. 2009 Sep 8;1288:105-15. doi: 10.1016/j.brainres.2009.06.045. Epub 2009 Jun 23.
Fogelman D, Zafonte R. Exercise to enhance neurocognitive function after traumatic brain injury. PM R. 2012 Nov;4(11):908-13. doi: 10.1016/j.pmrj.2012.09.028.
Wogensen E, Mala H, Mogensen J. The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models: A Systematic Review. Neural Plast. 2015;2015:830871. doi: 10.1155/2015/830871. Epub 2015 Oct 5.
Martinsen S, Flodin P, Berrebi J, Lofgren M, Bileviciute-Ljungar I, Mannerkorpi K, Ingvar M, Fransson P, Kosek E. The role of long-term physical exercise on performance and brain activation during the Stroop colour word task in fibromyalgia patients. Clin Physiol Funct Imaging. 2018 May;38(3):508-516. doi: 10.1111/cpf.12449. Epub 2017 Jun 18.
Edwards T, Pilutti LA. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: A systematic review and future research directions. Mult Scler Relat Disord. 2017 Aug;16:31-39. doi: 10.1016/j.msard.2017.06.003. Epub 2017 Jun 12.
Clark PJ, Brzezinska WJ, Thomas MW, Ryzhenko NA, Toshkov SA, Rhodes JS. Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice. Neuroscience. 2008 Sep 9;155(4):1048-58. doi: 10.1016/j.neuroscience.2008.06.051. Epub 2008 Jul 1.
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3017-22. doi: 10.1073/pnas.1015950108. Epub 2011 Jan 31.
Biedermann SV, Fuss J, Steinle J, Auer MK, Dormann C, Falfan-Melgoza C, Ende G, Gass P, Weber-Fahr W. The hippocampus and exercise: histological correlates of MR-detected volume changes. Brain Struct Funct. 2016 Apr;221(3):1353-63. doi: 10.1007/s00429-014-0976-5. Epub 2014 Dec 31.
Chaddock L, Erickson KI, Prakash RS, Kim JS, Voss MW, Vanpatter M, Pontifex MB, Raine LB, Konkel A, Hillman CH, Cohen NJ, Kramer AF. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010 Oct 28;1358:172-83. doi: 10.1016/j.brainres.2010.08.049. Epub 2010 Aug 22.
Hehar H, Mychasiuk R. The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats following a concussion/mild traumatic brain injury. Neurobiol Dis. 2016 Mar;87:11-8. doi: 10.1016/j.nbd.2015.12.007. Epub 2015 Dec 17.
Leddy J, Baker JG, Haider MN, Hinds A, Willer B. A Physiological Approach to Prolonged Recovery From Sport-Related Concussion. J Athl Train. 2017 Mar;52(3):299-308. doi: 10.4085/1062-6050-51.11.08.
Leckie RL, Oberlin LE, Voss MW, Prakash RS, Szabo-Reed A, Chaddock-Heyman L, Phillips SM, Gothe NP, Mailey E, Vieira-Potter VJ, Martin SA, Pence BD, Lin M, Parasuraman R, Greenwood PM, Fryxell KJ, Woods JA, McAuley E, Kramer AF, Erickson KI. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci. 2014 Dec 11;8:985. doi: 10.3389/fnhum.2014.00985. eCollection 2014.
Merritt VC, Arnett PA. Apolipoprotein E (APOE) ϵ4 Allele Is Associated with Increased Symptom Reporting Following Sports Concussion. J Int Neuropsychol Soc. 2016 Jan;22(1):89-94. doi: 10.1017/S1355617715001022. Epub 2015 Oct 20.
Merritt VC, Rabinowitz AR, Arnett PA. The Influence of the Apolipoprotein E (APOE) Gene on Subacute Post-Concussion Neurocognitive Performance in College Athletes. Arch Clin Neuropsychol. 2018 Feb 1;33(1):36-46. doi: 10.1093/arclin/acx051.
von Steinbuechel N, Covic A, Polinder S, Kohlmann T, Cepulyte U, Poinstingl H, Backhaus J, Bakx W, Bullinger M, Christensen AL, Formisano R, Gibbons H, Hofer S, Koskinen S, Maas A, Neugebauer E, Powell J, Sarajuuri J, Sasse N, Schmidt S, Muhlan H, von Wild K, Zitnay G, Truelle JL. Assessment of Health-Related Quality of Life after TBI: Comparison of a Disease-Specific (QOLIBRI) with a Generic (SF-36) Instrument. Behav Neurol. 2016;2016:7928014. doi: 10.1155/2016/7928014. Epub 2016 Feb 1.
Esselman PC, Uomoto JM. Classification of the spectrum of mild traumatic brain injury. Brain Inj. 1995 May-Jun;9(4):417-24. doi: 10.3109/02699059509005782.
Ades PA, Grunvald MH. Cardiopulmonary exercise testing before and after conditioning in older coronary patients. Am Heart J. 1990 Sep;120(3):585-9. doi: 10.1016/0002-8703(90)90015-p.
Baker JG, Freitas MS, Leddy JJ, Kozlowski KF, Willer BS. Return to full functioning after graded exercise assessment and progressive exercise treatment of postconcussion syndrome. Rehabil Res Pract. 2012;2012:705309. doi: 10.1155/2012/705309. Epub 2012 Jan 16.
Leddy JJ, Sandhu H, Sodhi V, Baker JG, Willer B. Rehabilitation of Concussion and Post-concussion Syndrome. Sports Health. 2012 Mar;4(2):147-54. doi: 10.1177/1941738111433673.
Polak P, Leddy JJ, Dwyer MG, Willer B, Zivadinov R. Diffusion tensor imaging alterations in patients with postconcussion syndrome undergoing exercise treatment: a pilot longitudinal study. J Head Trauma Rehabil. 2015 Mar-Apr;30(2):E32-42. doi: 10.1097/HTR.0000000000000037.
Donnelly KZ, Linnea K, Grant DA, Lichtenstein J. The feasibility and impact of a yoga pilot programme on the quality-of-life of adults with acquired brain injury. Brain Inj. 2017;31(2):208-214. doi: 10.1080/02699052.2016.1225988. Epub 2016 Dec 12.
Mercier LJ, McIntosh SJ, Boucher C, Joyce JM, Batycky J, Galarneau JM, Esser MJ, Schneider KJ, Dukelow SP, Harris AD, Debert CT. Effect of Aerobic Exercise on Symptom Burden and Quality of Life in Adults With Persisting Post-concussive Symptoms: The ACTBI Randomized Controlled Trial. Arch Phys Med Rehabil. 2025 Feb;106(2):195-205. doi: 10.1016/j.apmr.2024.10.002. Epub 2024 Oct 18.
Mercier LJ, Fung TS, Harris AD, Dukelow SP, Debert CT. Improving symptom burden in adults with persistent post-concussive symptoms: a randomized aerobic exercise trial protocol. BMC Neurol. 2020 Feb 5;20(1):46. doi: 10.1186/s12883-020-1622-x.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
REB18-1329
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.