Eccentric Training Effects on Functionality and Neuromechanical Properties After Achilles Tendon Surgical Repair

NCT ID: NCT03861572

Last Updated: 2024-03-29

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

33 participants

Study Classification

INTERVENTIONAL

Study Start Date

2019-02-25

Study Completion Date

2022-08-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Early rehabilitation protocols have been studied in Achilles tendon (AT) rupture patients, but deficits in tendon biomechanical properties have been observed several years after the injury. AT rupture patients are unable to return to their previous levels of physical activity. They present deleterious adaptations in the plantar flexor muscles that lead to functional deficits, and deficits in the tendon's structural and mechanical properties. Eccentric contractions have been suggested to recover these muscle properties. This contraction is known to produce higher force compared to isometric and concentric contractions, and increases tendon stiffness. However, there is a lack of studies showing the effects of the eccentric training in AT rupture rehabilitation. We want to know if an isokinetic eccentric training program will determine the desired adaptations on triceps surae muscle-tendon unit's properties in patients subjected to the AT surgical repair. More specifically, the aim of this study is verifying the effects of a 12-week eccentric training program on triceps surae muscle-tendon unit's properties in subjects that were subjected to the AT surgical repair. 30 subjects will be randomized in two groups: (1) isokinetic eccentric training; and (2) traditional eccentric training control group. All participants will be submitted to a four-week control period, followed by a 12-week period of training for the plantar flexor muscles. Neuromuscular system properties, AT biomechanical properties and functional tests will be evaluated. Participants will be evaluated in four moments: at baseline; after 4, 8 and 12 weeks of rehabilitation. Tendon mechanical (stiffness, stress, strain), material (Young's modulus) and morphological (cross-sectional area and tendon length) properties; muscle architecture (thickness, pennation angle and fascicle length); and functional tests (heel rise resistance and height) will be analyzed between groups and periods. Effects and interactions will be analyzed with ANOVA two-way. Clinical effects will be analyzed using effect size and magnitude-based inferences.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Detailed Description: Early rehabilitation protocols have been studied in Achilles tendon (AT) rupture patients, but deficits in tendon biomechanical properties have been observed several years after the injury. AT rupture patients are unable to return to their previous levels of physical activity. They present deleterious adaptations in the plantar flexor muscles that lead to functional deficits and deficits in the tendon structural and mechanical properties. Deficits in calf muscle endurance and strength remained 7 years after the injury. In this regards, eccentric contractions are recommended to recover muscle morphology and mechanical properties. This contraction type produces higher force compared to isometric and concentric contractions, and increases tendon stiffness. However, there is a lack of studies showing the effect of the eccentric training in AT rupture rehabilitation. We want to know if an isokinetic eccentric training program will determine the desired adaptations on triceps surae muscle-tendon unit's properties in patients subjected to the AT surgical repair. More specifically, the aim of this study is verifying the effects of a 12-week eccentric training program on triceps surae muscle-tendon unit's properties in subjects that were subjected to the AT surgical repair. Our hypothesis is that the eccentric training program will (1) increase the ability to produce muscular strength; (2) will produce an increase in gastrocnemius and soleus muscles thickness, fascicle length, and pennation angle; (3) will increase AT stiffness and Young's modulus; (4) will increase ankle functionality; (5) will improve the patient's quality of life. Finally, we expect that the abovementioned changes from isokinetic eccentric training will be greater than those from the traditional eccentric control group that will be subjected to 12 weeks of plantar flexor training with weights. 30 subjects will be randomized in two groups: (1) isokinetic eccentric training; and (2) traditional eccentric training control group. All participants will be submitted to a four-week control period, followed by a 12- week period of training for the plantar flexor muscles. Neuromuscular system properties, AT biomechanical properties and functional tests will be evaluated. Participants will be evaluated in four moments: at baseline; after 4, 8 and 12 weeks of rehabilitation. Tendon mechanical (stiffness, stress, strain), material (Young's modulus) and morphological (cross sectional area and tendon length) properties; muscle architecture (thickness, pennation angle and fascicle length); and functional tests (heel rise resistance and height) will be analyzed between groups and periods. Effects and interactions will be analyzed with ANOVA two- way (group x period). Clinical effects will be analyzed using effect size (Cohen's d) and magnitude-based inferences.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Achilles Tendon Rupture

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Investigators Outcome Assessors
Raters will be blinded to the participants' allocation in each group.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Isokinetic eccentric group

The isokinetic eccentric training will be carried out with the volunteers positioned seated on the dynamometer with the apparent axis of the ankle joint rotation aligned with the dynamometer's axis of rotation. Movement will be executed in the angular velocity of 30°·s-1. Ankle range of motion (ROM) will be standardized for all participants in 50º, which shall respect each individual's maximal dorsiflexion amplitude. The 50° eccentric training ROM will start from each subject's 80% of the maximal dorsiflexion. This procedure will be used to ensure that all subjects perform training on the same plantar flexor muscular length, which should promote the same level of muscular requirement among the participants. This methodology was recently used by GEREMIA and VAZ (2016) study.

Group Type EXPERIMENTAL

Isokinetic eccentric training

Intervention Type OTHER

Training sessions will be performed in the same isokinetic dynamometer used in previous evaluations, twice a week, with a minimum interval of 72 hours between sessions.

Traditional eccentric training

Participants will be engaged in an intervention program consisting of 12 weeks of traditional eccentric training. The training will be carried out with the volunteers at gym in stand position. Concentric phase will be realized with both legs and the eccentric one only with one of them. Training progression will be the same from de isokinetic eccentric group. The same periodization from eccentric group will be used to permit us a posteriori comparison between groups. Training sessions will be performed at university gym, twice a week, with a minimum interval of 72 hours between sessions. Each training session will comprise the same specific warming protocol for the ankle joint from the eccentric training.

Group Type ACTIVE_COMPARATOR

Traditional eccentric training

Intervention Type OTHER

Training sessions will be performed at university gym, twice a week, with a minimum interval of 72 hours between sessions.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Isokinetic eccentric training

Training sessions will be performed in the same isokinetic dynamometer used in previous evaluations, twice a week, with a minimum interval of 72 hours between sessions.

Intervention Type OTHER

Traditional eccentric training

Training sessions will be performed at university gym, twice a week, with a minimum interval of 72 hours between sessions.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Participants will be male and female subjects who suffered total acute Achilles tendon rupture, and which underwent surgical repair. In addition, to participate in this study all volunteers will need to present medical and/or physiotherapeutic release for physical/sports activities practice.

Exclusion Criteria

* Volunteers that did not have Achilles tendon surgical reconstruction, that did not present medical and/or physiotherapeutic release for physical/sports activities, who have participated in strength training program for the plantar flexors in the last 6 months, patients with diabetic diseases, as well as those with difficulty for understanding and/or executing the test and training protocols in the isokinetic dynamometer will be excluded.
Minimum Eligible Age

25 Years

Maximum Eligible Age

50 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Federal University of Rio Grande do Sul

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Marco Aurélio Vaz, PhD

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Marco A Vaz, PhD

Role: PRINCIPAL_INVESTIGATOR

Federal University of Rio Grande do Sul

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul

Porto Alegre, Rio Grande do Sul, Brazil

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Brazil

References

Explore related publications, articles, or registry entries linked to this study.

Barfod KW, Hansen MS, Holmich P, Troelsen A, Kristensen MT. Efficacy of early controlled motion of the ankle compared with no motion after non-operative treatment of an acute Achilles tendon rupture: study protocol for a randomized controlled trial. Trials. 2016 Nov 29;17(1):564. doi: 10.1186/s13063-016-1697-2.

Reference Type BACKGROUND
PMID: 27894329 (View on PubMed)

Baroni BM, Geremia JM, Rodrigues R, De Azevedo Franke R, Karamanidis K, Vaz MA. Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle Nerve. 2013 Oct;48(4):498-506. doi: 10.1002/mus.23785. Epub 2013 Jul 15.

Reference Type BACKGROUND
PMID: 23852989 (View on PubMed)

Baroni BM, Rodrigues R, Franke RA, Geremia JM, Rassier DE, Vaz MA. Time course of neuromuscular adaptations to knee extensor eccentric training. Int J Sports Med. 2013 Oct;34(10):904-11. doi: 10.1055/s-0032-1333263. Epub 2013 Mar 22.

Reference Type BACKGROUND
PMID: 23526592 (View on PubMed)

Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006 Mar;1(1):50-7.

Reference Type BACKGROUND
PMID: 19114737 (View on PubMed)

BENJAMIN, M.; THEOBALD, P.; SUZUKI, D. et al. The Anatomy of the Achilles Tendon. In: MAFFULLI, N. e ALMEKINDERS, L. C. (Ed.). The Achilles Tendon. London, UK: Springer, 2007. cap. 2,

Reference Type BACKGROUND

Brorsson A, Gravare Silbernagel K, Olsson N, Nilsson Helander K. Calf Muscle Performance Deficits Remain 7 Years After an Achilles Tendon Rupture. Am J Sports Med. 2018 Feb;46(2):470-477. doi: 10.1177/0363546517737055. Epub 2017 Oct 25.

Reference Type BACKGROUND
PMID: 29068725 (View on PubMed)

Brorsson A, Willy RW, Tranberg R, Gravare Silbernagel K. Heel-Rise Height Deficit 1 Year After Achilles Tendon Rupture Relates to Changes in Ankle Biomechanics 6 Years After Injury. Am J Sports Med. 2017 Nov;45(13):3060-3068. doi: 10.1177/0363546517717698. Epub 2017 Aug 7.

Reference Type BACKGROUND
PMID: 28783473 (View on PubMed)

Chalmers J. Review article: Treatment of Achilles tendon ruptures. J Orthop Surg (Hong Kong). 2000 Jun;8(1):97-99. doi: 10.1177/230949900000800118. No abstract available.

Reference Type BACKGROUND
PMID: 12468884 (View on PubMed)

COHEN, J. Statistical Power Analysis for the Behavioral Sciences. 2nd. USA: Lawrence Erlbaum Associates, Publishers, 1988.

Reference Type BACKGROUND

Duclay J, Martin A, Duclay A, Cometti G, Pousson M. Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve. 2009 Jun;39(6):819-27. doi: 10.1002/mus.21297.

Reference Type BACKGROUND
PMID: 19301364 (View on PubMed)

El-Akkawi AI, Joanroy R, Barfod KW, Kallemose T, Kristensen SS, Viberg B. Effect of Early Versus Late Weightbearing in Conservatively Treated Acute Achilles Tendon Rupture: A Meta-Analysis. J Foot Ankle Surg. 2018 Mar-Apr;57(2):346-352. doi: 10.1053/j.jfas.2017.06.006. Epub 2017 Sep 30.

Reference Type BACKGROUND
PMID: 28974345 (View on PubMed)

Frankewycz B, Krutsch W, Weber J, Ernstberger A, Nerlich M, Pfeifer CG. Rehabilitation of Achilles tendon ruptures: is early functional rehabilitation daily routine? Arch Orthop Trauma Surg. 2017 Mar;137(3):333-340. doi: 10.1007/s00402-017-2627-9. Epub 2017 Jan 17.

Reference Type BACKGROUND
PMID: 28097423 (View on PubMed)

Frizziero A, Trainito S, Oliva F, Nicoli Aldini N, Masiero S, Maffulli N. The role of eccentric exercise in sport injuries rehabilitation. Br Med Bull. 2014 Jun;110(1):47-75. doi: 10.1093/bmb/ldu006. Epub 2014 Apr 15.

Reference Type BACKGROUND
PMID: 24736013 (View on PubMed)

Frizziero A, Vittadini F, Fusco A, Giombini A, Masiero S. Efficacy of eccentric exercise in lower limb tendinopathies in athletes. J Sports Med Phys Fitness. 2016 Nov;56(11):1352-1358. Epub 2015 Nov 26.

Reference Type BACKGROUND
PMID: 26609968 (View on PubMed)

Geremia JM, Bobbert MF, Casa Nova M, Ott RD, Lemos Fde A, Lupion Rde O, Frasson VB, Vaz MA. The structural and mechanical properties of the Achilles tendon 2 years after surgical repair. Clin Biomech (Bristol). 2015 Jun;30(5):485-92. doi: 10.1016/j.clinbiomech.2015.03.005. Epub 2015 Mar 11.

Reference Type BACKGROUND
PMID: 25828432 (View on PubMed)

Gomes da Silva CF, Lima E Silva FX, Vianna KB, Oliveira GDS, Vaz MA, Baroni BM. Eccentric training combined to neuromuscular electrical stimulation is not superior to eccentric training alone for quadriceps strengthening in healthy subjects: a randomized controlled trial. Braz J Phys Ther. 2018 Nov-Dec;22(6):502-511. doi: 10.1016/j.bjpt.2018.03.006. Epub 2018 Mar 28.

Reference Type BACKGROUND
PMID: 29628406 (View on PubMed)

Heikkinen J, Lantto I, Piilonen J, Flinkkila T, Ohtonen P, Siira P, Laine V, Niinimaki J, Pajala A, Leppilahti J. Tendon Length, Calf Muscle Atrophy, and Strength Deficit After Acute Achilles Tendon Rupture: Long-Term Follow-up of Patients in a Previous Study. J Bone Joint Surg Am. 2017 Sep 20;99(18):1509-1515. doi: 10.2106/JBJS.16.01491.

Reference Type BACKGROUND
PMID: 28926379 (View on PubMed)

Herzog W, ter Keurs HE. Force-length relation of in-vivo human rectus femoris muscles. Pflugers Arch. 1988 Jun;411(6):642-7. doi: 10.1007/BF00580860.

Reference Type BACKGROUND
PMID: 3412867 (View on PubMed)

Horstmann T, Lukas C, Merk J, Brauner T, Mundermann A. Deficits 10-years after Achilles tendon repair. Int J Sports Med. 2012 Jun;33(6):474-9. doi: 10.1055/s-0032-1301932. Epub 2012 Apr 12.

Reference Type BACKGROUND
PMID: 22499571 (View on PubMed)

Huang J, Wang C, Ma X, Wang X, Zhang C, Chen L. Rehabilitation regimen after surgical treatment of acute Achilles tendon ruptures: a systematic review with meta-analysis. Am J Sports Med. 2015 Apr;43(4):1008-16. doi: 10.1177/0363546514531014. Epub 2014 May 2.

Reference Type BACKGROUND
PMID: 24793572 (View on PubMed)

Karamanidis K, Arampatzis A. Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J Biomech. 2006;39(3):406-17. doi: 10.1016/j.jbiomech.2004.12.017.

Reference Type BACKGROUND
PMID: 16389081 (View on PubMed)

Korkmaz M, Erkoc MF, Yolcu S, Balbaloglu O, Oztemur Z, Karaaslan F. Weight bearing the same day versus non-weight bearing for 4 weeks in Achilles tendon rupture. J Orthop Sci. 2015 May;20(3):513-6. doi: 10.1007/s00776-015-0710-z. Epub 2015 Mar 14.

Reference Type BACKGROUND
PMID: 25773309 (View on PubMed)

Langberg H, Ellingsgaard H, Madsen T, Jansson J, Magnusson SP, Aagaard P, Kjaer M. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis. Scand J Med Sci Sports. 2007 Feb;17(1):61-6. doi: 10.1111/j.1600-0838.2006.00522.x. Epub 2006 Jun 19.

Reference Type BACKGROUND
PMID: 16787448 (View on PubMed)

Lantto I, Heikkinen J, Flinkkila T, Ohtonen P, Kangas J, Siira P, Leppilahti J. Early functional treatment versus cast immobilization in tension after achilles rupture repair: results of a prospective randomized trial with 10 or more years of follow-up. Am J Sports Med. 2015 Sep;43(9):2302-9. doi: 10.1177/0363546515591267. Epub 2015 Jul 30.

Reference Type BACKGROUND
PMID: 26229048 (View on PubMed)

Lantto I, Heikkinen J, Flinkkila T, Ohtonen P, Leppilahti J. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand J Med Sci Sports. 2015 Feb;25(1):e133-8. doi: 10.1111/sms.12253. Epub 2014 May 23.

Reference Type BACKGROUND
PMID: 24862178 (View on PubMed)

MAFFULLI, N.; ALMEKINDERS, L. C. The Achilles Tendon. Springer, 2007.

Reference Type BACKGROUND

Maffulli N, Tallon C, Wong J, Lim KP, Bleakney R. Early weightbearing and ankle mobilization after open repair of acute midsubstance tears of the achilles tendon. Am J Sports Med. 2003 Sep-Oct;31(5):692-700. doi: 10.1177/03635465030310051001.

Reference Type BACKGROUND
PMID: 12975188 (View on PubMed)

Maffulli N, Walley G, Sayana MK, Longo UG, Denaro V. Eccentric calf muscle training in athletic patients with Achilles tendinopathy. Disabil Rehabil. 2008;30(20-22):1677-84. doi: 10.1080/09638280701786427.

Reference Type BACKGROUND
PMID: 18608370 (View on PubMed)

Mahieu NN, McNair P, Cools A, D'Haen C, Vandermeulen K, Witvrouw E. Effect of eccentric training on the plantar flexor muscle-tendon tissue properties. Med Sci Sports Exerc. 2008 Jan;40(1):117-23. doi: 10.1249/mss.0b013e3181599254.

Reference Type BACKGROUND
PMID: 18091014 (View on PubMed)

McNair P, Nordez A, Olds M, Young SW, Cornu C. Biomechanical properties of the plantar flexor muscle-tendon complex 6 months post-rupture of the Achilles tendon. J Orthop Res. 2013 Sep;31(9):1469-74. doi: 10.1002/jor.22381. Epub 2013 May 6.

Reference Type BACKGROUND
PMID: 23649780 (View on PubMed)

Morrissey D, Roskilly A, Twycross-Lewis R, Isinkaye T, Screen H, Woledge R, Bader D. The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness. Clin Rehabil. 2011 Mar;25(3):238-47. doi: 10.1177/0269215510382600. Epub 2010 Oct 27.

Reference Type BACKGROUND
PMID: 20980351 (View on PubMed)

Mortensen HM, Skov O, Jensen PE. Early motion of the ankle after operative treatment of a rupture of the Achilles tendon. A prospective, randomized clinical and radiographic study. J Bone Joint Surg Am. 1999 Jul;81(7):983-90. doi: 10.2106/00004623-199907000-00011.

Reference Type BACKGROUND
PMID: 10428130 (View on PubMed)

Neumayer F, Mouhsine E, Arlettaz Y, Gremion G, Wettstein M, Crevoisier X. A new conservative-dynamic treatment for the acute ruptured Achilles tendon. Arch Orthop Trauma Surg. 2010 Mar;130(3):363-8. doi: 10.1007/s00402-009-0865-1. Epub 2009 Apr 2.

Reference Type BACKGROUND
PMID: 19340434 (View on PubMed)

Pensini M, Martin A, Maffiuletti NA. Central versus peripheral adaptations following eccentric resistance training. Int J Sports Med. 2002 Nov;23(8):567-74. doi: 10.1055/s-2002-35558.

Reference Type BACKGROUND
PMID: 12439772 (View on PubMed)

Valkering KP, Aufwerber S, Ranuccio F, Lunini E, Edman G, Ackermann PW. Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017 Jun;25(6):1807-1816. doi: 10.1007/s00167-016-4270-3. Epub 2016 Aug 18.

Reference Type BACKGROUND
PMID: 27539402 (View on PubMed)

Wasielewski NJ, Kotsko KM. Does eccentric exercise reduce pain and improve strength in physically active adults with symptomatic lower extremity tendinosis? A systematic review. J Athl Train. 2007 Jul-Sep;42(3):409-21.

Reference Type BACKGROUND
PMID: 18059998 (View on PubMed)

Zellers JA, Carmont MR, Gravare Silbernagel K. Return to play post-Achilles tendon rupture: a systematic review and meta-analysis of rate and measures of return to play. Br J Sports Med. 2016 Nov;50(21):1325-1332. doi: 10.1136/bjsports-2016-096106. Epub 2016 Jun 3.

Reference Type BACKGROUND
PMID: 27259751 (View on PubMed)

Zhang H, Tang H, He Q, Wei Q, Tong D, Wang C, Wu D, Wang G, Zhang X, Ding W, Li D, Ding C, Liu K, Ji F. Surgical Versus Conservative Intervention for Acute Achilles Tendon Rupture: A PRISMA-Compliant Systematic Review of Overlapping Meta-Analyses. Medicine (Baltimore). 2015 Nov;94(45):e1951. doi: 10.1097/MD.0000000000001951.

Reference Type BACKGROUND
PMID: 26559266 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

UFRGS 3.046.049

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.