Bariatric Surgery: Microbiome & Diabetes

NCT ID: NCT03723486

Last Updated: 2022-11-02

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

120 participants

Study Classification

OBSERVATIONAL

Study Start Date

2015-11-30

Study Completion Date

2023-12-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This study is a prospective cohort study, following 80 morbidly obese patients undergoing bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB). The investigators are measuring intestinal microbiota (IM) and oral microbiota (OM) at the beginning before any treatment, at the time of surgery, which is after a very low calorie standard diet, and 1 and 6 months after surgery. The investigators assess whether changes in IM are related to changes in insulin resistance (IR), other features of the metabolic syndrome (MetS) and OM.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Morbid obesity is associated with not only type 2 diabetes (T2D) of morbidly obese patients), but also cardiovascular complications, all of which remarkably improved and even resolved with bariatric surgery, of which the RYGB surgery has become the gold standard. Many studies have shown that within a few weeks post-RYGB there is dramatic improvement in IR and/or T2D independent of weight loss that ensues. These results led us to hypothesize that changes in intestinal microbiome (IM) composition and metagenome may be independently associated with improvement in metabolic parameters in humans undergoing RYGB.

Another aspect of RYGB that has not been studied is the potential changes in oral microbiome (OM) and salivary proteome (SP) and their relationship with weight loss and metabolic improvement. Understanding the OM and SP in morbidly obese patients before and after RYGB is important because shifts in the OM and SP may explain the susceptibility of these patients for oral infections like periodontal disease, which is more prevalent and severe in this population, particularly if T2D is present To our knowledge there are no longitudinal studies the relation between oral and intestinal microbiome before and after bariatric surgery. Furthermore, there are no studies looking at the effect of weight-reduction with the very low calorie diet (VLCD) Optifast regimen on IM, which the investigators plan to do. As IM may contribute to obesity and IR/T2D, the latter being the most dominant feature of the MetS. However, whether specific IM compositions are associated with improvement of obesity, IR/T2D and other features of the MetS is not clear; and the effects of RYGB on IM for treatment of these disorders in morbid obesity have not been well studied.

The investigators will conduct a prospective observational study of morbidly obese patients undergoing RYGB, in which the investigators will measure the intestinal microbiome before and after surgery along with insulin resistance and metabolic syndrome. Baseline measurements will be done before the pre-operative run-in with the very low calorie Optifast regimen (800 kcal/d) given before the laparoscopic RYGB (1 week/100 lbs body weight) to reduce the liver size for surgical access. Preoperatively, Optifast likely leads to changes in IM (never assessed) in addition to weight loss and improvement in MetS parameters. Aim: To track the changes in IM structure and function (metagenome) of morbidly obese patients undergoing laparoscopic RYGB through 3 stages - a) before vs. after pre-op Optifast weight reduction treatment 24; and post-op RYGB at b) 1 month; and at c) 6 months. The investigators will correlate the specific changes in IM through these stages, to improvement in IR and other features of the MetS. At the same time points the investigators will also measure the OM, salivary flow rate and SP, as well as oral inflammatory load.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Obesity

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Roux-en-Y gastric bypass surgery (RYGB)

Morbidly obese patients undergoing gastric bypass surgery

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Morbidly obese patients (BMI \> 40 kg/m2 or BMI \>35-40 kg/m2 with other severe weight loss responsive comorbidities, undergoing laparoscopic RYGB surgery).

Exclusion Criteria

* regular intake of non-steroidal anti-inflammatory drugs; prebiotics, probiotics or antibiotics or any experimental drug in the 3 months prior to study entry; type 1 diabetes, chronic gastrointestinal diseases, previous gastrointestinal surgery modifying the anatomy, smoking; pregnancy or breastfeeding; patients not tolerating Optifast; bariatric surgery other than RYGB patients.
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Canadian Institutes of Health Research (CIHR)

OTHER_GOV

Sponsor Role collaborator

University Health Network, Toronto

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Johane Allard

Professor, Gastroenterologist

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Johane P Allard, MD, FRCPC

Role: PRINCIPAL_INVESTIGATOR

University Health Network, Toronto

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University Health Network, Toronto General Hospital

Toronto, Ontario, Canada

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Canada

References

Explore related publications, articles, or registry entries linked to this study.

Lewis MC, Phillips ML, Slavotinek JP, Kow L, Thompson CH, Toouli J. Change in liver size and fat content after treatment with Optifast very low calorie diet. Obes Surg. 2006 Jun;16(6):697-701. doi: 10.1381/096089206777346682.

Reference Type BACKGROUND
PMID: 16756727 (View on PubMed)

Chaffee BW, Weston SJ. Association between chronic periodontal disease and obesity: a systematic review and meta-analysis. J Periodontol. 2010 Dec;81(12):1708-24. doi: 10.1902/jop.2010.100321. Epub 2010 Aug 19.

Reference Type BACKGROUND
PMID: 20722533 (View on PubMed)

Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014 Feb;2(2):152-64. doi: 10.1016/S2213-8587(13)70218-3. Epub 2014 Feb 3.

Reference Type BACKGROUND
PMID: 24622719 (View on PubMed)

Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, Xu A, Chavakis T, Bornstein AB, Ehrhart-Bornstein M, Lamounier-Zepter V, Lohmann T, Wolf T, Bornstein SR. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013 Dec;13(6):514-22. doi: 10.1038/tpj.2012.43. Epub 2012 Oct 2.

Reference Type BACKGROUND
PMID: 23032991 (View on PubMed)

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012 Oct 4;490(7418):55-60. doi: 10.1038/nature11450. Epub 2012 Sep 26.

Reference Type BACKGROUND
PMID: 23023125 (View on PubMed)

Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium; Bork P, Wang J, Ehrlich SD, Pedersen O. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013 Aug 29;500(7464):541-6. doi: 10.1038/nature12506.

Reference Type BACKGROUND
PMID: 23985870 (View on PubMed)

Arimatsu K, Yamada H, Miyazawa H, Minagawa T, Nakajima M, Ryder MI, Gotoh K, Motooka D, Nakamura S, Iida T, Yamazaki K. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014 May 6;4:4828. doi: 10.1038/srep04828.

Reference Type BACKGROUND
PMID: 24797416 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

TB2-138775

Identifier Type: OTHER_GRANT

Identifier Source: secondary_id

15-8784-AE

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.