Effect of Adrenocorticotropic Hormone on Vascular Endothelial Growth Factor Release in Children Study
NCT ID: NCT03709381
Last Updated: 2019-02-21
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
EARLY_PHASE1
10 participants
INTERVENTIONAL
2017-10-01
2019-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
This study will recruit ten healthy children and adolescents, ages 9-18, to assess the effects of ACTH on VEGF levels. The investigators will measure the response of VEGF and cortisol to an administration of a low dose and high dose of cosyntropin (the synthetic ACTH analog used in this test). The hypothesis of this study is that VEGF and cortisol will both increase after administration of cosyntropin. At this time, no other studies have demonstrated that VEGF is responsive to ACTH in humans. If the hypothesis is correct, the results will have two main implications. VEGF can be used as a marker of ACTH administration during the LDAST to identify false positive tests. Secondly, this will help further research into whether ACTH can be used to protect against bone disease in high-dose steroid-treated patients. Further studies can be done to assess whether this effect will be the same in patients with AI or steroid-induced adrenal suppression.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Growth Hormone and Endothelial Function in Children
NCT00373386
Study of Weekly ALTU-238 Compared With Daily Nutropin AQ in Prepubertal Children With Growth Hormone Deficiency
NCT00837863
A Safety, Tolerability and Efficacy Study of TransCon hGH in Children With Growth Hormone Deficiency
NCT03305016
Growth Hormone Therapy and Bone Quality in Pediatric Osteoporosis
NCT00757393
Endocrine Dysfunction and Growth Hormone Deficiency in Children With Optic Nerve Hypoplasia
NCT00140413
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Bone disease: As stated above, patients taking chronic steroids are at high risk for significant bone effects. Glucocorticoids cause osteoblast apoptosis and decreased function while simultaneously decreasing apoptosis of osteoclasts, overall resulting in decreased bone formation and higher resorption. This leads to low BMD and fractures. Osteonecrosis can also be due to glucocorticoid causing decreased angiogenesis in high risk areas of bone (i.e. the femoral head). In rabbits,one study demonstrated that ACTH use protects against osteonecrosis by stimulating osteoblasts to release VEGF, which maintains good blood flow to these high risk areas of bone. Another study demonstrated that Cushing Syndrome patients with ACTH-producing pituitary tumors had less BMD loss than those with adrenal cortisol-producing tumors. This outcome points toward ACTH being protective against osteopenia (even in a high steroid state). The mechanism for this protective effect is unclear but could be through ACTH stimulation of VEGF. It is unknown whether ACTH increases VEGF in humans and if it does the dose needed and timeframe of the response need to be determined.
Low-dose ACTH stimulation test (LDAST): There are several methods to evaluate adrenal insufficiency (AI), however the LDAST is best for diagnosing central AI and steroid-induced adrenal suppression (SIAS). The Metyrapone test is very specific, but it carries the risk of causing acute AI and requires a hospitalization to administer. The insulin tolerance test is the gold standard for diagnosing AI, but also carries the risk of causing hypoglycemia. The "standard" or high-dose (250mcg) ACTH stimulation test is a good test as well for diagnosing primary AI, but can result in false negatives that miss patients with central AI or SIAS, which can have significant morbidity (sensitivity for central AI is only 73%). Primary AI can also be diagnosed with an elevated ACTH level, but central AI and SIAS usually have a low to normal ACTH. Therefore, the LDAST test was created to help increase the rate of patients with central AI being diagnosed, with a sensitivity for central AI at 93%. However, there are several limitations to the LDAST. Cosyntropin is dispensed in 250 mcg vials, which is used for the high-dose test. and must be diluted to 1 mcg for the LDAST. The medication also runs the risk of sticking to IV tubing. Therefore, it is occasionally not truly given to the patient, which can cause a false positive result (the lack of cortisol response to ACTH is not due to AI, but due to never receiving cosyntropin). Due to these limitations, the specificity for diagnosing central AI is 90%. This can cause the interpreting physician to diagnose AI, and prescribe a hydrocortisone, when the patient did not truly have AI.
If the LDAST had a positive control to show that the cosyntropin appropriately reached the patient, it would help to allow the endocrinologist to recognize a false positive result. As stated above, VEGF is stimulated by ACTH in animals. If VEGF levels were measured with cortisol levels, and they rose above a set threshold, the interpreting physician could feel more comfortable knowing that the test was administered appropriately. For VEGF to be a good control value, it would need to have a significant rise in response to cosyntropin, and would need to rise quickly and after one dose (the LDAST lasts one hour) and be independent of the cortisol response. In the in vitro study above, steroid-treated cells had significant rise in VEGF within one hour of ACTH treatment, and VEGF stayed elevated for up to four hours. In a study looking at whether VEGF could be a diagnostic biomarker to differentiate acute stroke in adults versus stroke mimics, there was a significant elevation of VEGF at the time of stroke presentation compared to the average normal value (peak median 1700 pg/mL with interquartile range of 1500-1900; baseline median 466 with interquartile range of 392-649). The mechanism for rise in VEGF was postulated to be due to a hypoxia stimulus in this case. However, it seems that VEGF can be acutely stimulated (potentially within one hour of a stimulus) and has the ability to rise to several standard deviations above the normal median baseline value in humans.
VEGF: Vascular Endothelial Growth Factor is a cytokine glycoprotein that is responsible for angiogenesis, or the formation of new blood vessels. It can also maintain blood vessel density, thickness, and permeability, and it is vital for endothelial cell survival. VEGF is a family of cytokines, with VEGF-A being the prototype and most common. It is found in the lungs, kidneys, heart, adrenals, bone, brain, and several other organs. Within the adrenal, VEGF has been shown to be stimulated by ACTH and can be protective against atrophy in steroid use. Important in regards to this study, an animal study showed that VEGF can be stimulated by ACTH outside the adrenal glands, namely in osteoblasts in bone. Osteoblasts have an MC2R receptor that is stimulated by ACTH, leading to a rise in VEGF levels.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
ACTH stim test arm
Cosyntropin 1 mcg IV (low dose) will be given to subjects at t=0 minutes, and Cosyntropin 250 mcg (high dose) IV will be given to subjects at t=60 minutes. (All subjects were in the same arm and had the same protocol).
Low Dose Cosyntropin (ACTH) stimulation test
Cosyntropin 1 mcg IV given to subjects at t=0
High Dose Cosyntropin (ACTH) stimulation test
Cosyntropin 250 mcg IV given to subjects at t=60
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Low Dose Cosyntropin (ACTH) stimulation test
Cosyntropin 1 mcg IV given to subjects at t=0
High Dose Cosyntropin (ACTH) stimulation test
Cosyntropin 250 mcg IV given to subjects at t=60
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Steroid use within the prior six months (including IV, oral, inhaled, and intranasal steroids)
* Oral Contraceptive Pill use within the prior six months
* Any chronic medical conditions
* Pregnancy
9 Years
17 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Nationwide Children's Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Ryan Heksch
Fellow
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Ryan Heksch, MD
Role: PRINCIPAL_INVESTIGATOR
Nationwide Children's Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Nationwide Children's Hospital
Columbus, Ohio, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB17-00194
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.