Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE2
40 participants
INTERVENTIONAL
2018-10-01
2019-11-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
1. "Flushing" activated enzymes out of the pancreas and into the duodenum thereby preventing accumulation of activated enzymes within the pancreatic acinus
2. Directly alkalinizing the acinar cells, which limits intra-acinar cell damage by improving trafficking of inappropriately activated intra-acinar enzymes along the apical membrane.
In addition to standard care, patients will be divided into 4 cohorts. Cohorts 1,2 and 3 will be treated with different doses of intravenous synthetic human secretin. Cohort X will not receive human secretin, but all datapoints and specimens will be collected. The patient cohorts will be entered into the study as follows: Cohort X; Cohort 1; Cohort 2; Cohort 3. 5 patients in each cohort will be evaluated at each center (for a total of n=10 at both centers for each cohort). Dosing will start within 24 hours of hospitalization with no further synthetic human secretin administration beyond Day 3. Patients will continue to be followed for 7 days or until discharge, whichever comes first. Any data recorded to that point would be included in an intent-to-treat analysis. The primary objective is to perform a Phase II Pilot Study to explore the efficacy of intravenous synthetic human secretin as a pharmacologic adjunct to modulate the severity of human acute (non-obstructive) pancreatitis.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Secretin Infusion for Pain Due to Chronic Pancreatitis
NCT01265875
Secretin (ChiRhoStim) Pancreas Perfusion for Pancreatic Adenocarcinoma
NCT00587132
A Study of Synthetic Human Secretin (ChiRhoStim®) Administered Intravenously to Stimulate Exocrine Pancreas Fluid Secretion for Collection Via Endoscope and Laboratory Analysis of DNA Markers
NCT01087801
Secretin Infusion to Prevent Pancreatic Leaks Following Pancreatic Resection
NCT02160808
Cancer of the Pancreas Screening Study (CAPS 3)
NCT00438906
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
1. No secretin - standard of care and observation (Cohort X)
2. 32 mcg (\<50kg) or 40 mcg (≥50kg)IV Bolus every 12 hours (Cohort 1)
3. 32 mcg (\<50kg) or 40 mcg (≥50kg)IV Bolus every 6 hours (Cohort 2)
4. 32 mcg (\<50kg) or 40 mcg (≥50kg)IV Bolus every 4 hours (Cohort 3)
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Cohort X
no secretin administered. All observations
No interventions assigned to this group
Cohort 1
32 mcg (\<50kg) or 40 mcg (≥50kg) secretin two times a day (40 mcg; q 12 hrs)
Secretin
Drug to stimulate pancreatic secretion
Cohort 2
32 mcg (\<50kg) or 40 mcg (≥50kg) secretin four times a day (40 mcg; q 6 hrs)
Secretin
Drug to stimulate pancreatic secretion
Cohort 3
32 mcg (\<50kg) or 40 mcg (≥50kg) secretin six times a day (40 mcg; q 4 hrs)
Secretin
Drug to stimulate pancreatic secretion
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Secretin
Drug to stimulate pancreatic secretion
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Patient voluntarily signed written, informed consent agreement.
3. If patient is female and not more than 1 year post-menopausal, or surgically sterile, must use medically accepted form of contraception or abstain from sexual activities during study
4. Patient has acute pancreatitis as defined by the Atlanta Classification of 2012
5. No evidence of obstructive pancreatitis on available cross-sectional imaging
Exclusion Criteria
2. Pregnant woman, nursing mothers, or women of childbearing potential not on birth control
3. Known adverse reaction to human secretin
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Dartmouth-Hitchcock Medical Center
OTHER
ChiRhoClin, Inc.
INDUSTRY
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Timothy B Gardner, MD
Role: PRINCIPAL_INVESTIGATOR
Dartmouth-Hitchcock Medical Center
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Dartmouth Hitchcock Medical Center
Lebanon, New Hampshire, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
National Institutes of Health. Opportunities and challenges in digestive diseases research: recommendations of the national commission on digestive diseases. March 2009. Retrieved January 29, 2017.
Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. Gastroenterology. 2009 Apr;136(4):1134-44. doi: 10.1053/j.gastro.2009.02.038. Epub 2009 Feb 24. No abstract available.
Forsmark CE, Vege SS, Wilcox CM. Acute Pancreatitis. N Engl J Med. 2016 Nov 17;375(20):1972-1981. doi: 10.1056/NEJMra1505202. No abstract available.
Peery AF, Dellon ES, Lund J, Crockett SD, McGowan CE, Bulsiewicz WJ, Gangarosa LM, Thiny MT, Stizenberg K, Morgan DR, Ringel Y, Kim HP, DiBonaventura MD, Carroll CF, Allen JK, Cook SF, Sandler RS, Kappelman MD, Shaheen NJ. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology. 2012 Nov;143(5):1179-1187.e3. doi: 10.1053/j.gastro.2012.08.002. Epub 2012 Aug 8.
Lerch MM, Saluja AK, Runzi M, Dawra R, Saluja M, Steer ML. Pancreatic duct obstruction triggers acute necrotizing pancreatitis in the opossum. Gastroenterology. 1993 Mar;104(3):853-61. doi: 10.1016/0016-5085(93)91022-a.
Rattner DW. Experimental models of acute pancreatitis and their relevance to human disease. Scand J Gastroenterol Suppl. 1996;219:6-9. doi: 10.3109/00365529609104991.
Hegyi P, Pandol S, Venglovecz V, Rakonczay Z Jr. The acinar-ductal tango in the pathogenesis of acute pancreatitis. Gut. 2011 Apr;60(4):544-52. doi: 10.1136/gut.2010.218461. Epub 2010 Sep 28.
Grady T, Saluja A, Kaiser A, Steer M. Edema and intrapancreatic trypsinogen activation precede glutathione depletion during caerulein pancreatitis. Am J Physiol. 1996 Jul;271(1 Pt 1):G20-6. doi: 10.1152/ajpgi.1996.271.1.G20.
Prinz RA. Mechanisms of acute pancreatitis. Vascular etiology. Int J Pancreatol. 1991 Summer;9:31-8. doi: 10.1007/BF02925576.
Hegyi P, Rakonczay Z Jr. The role of pancreatic ducts in the pathogenesis of acute pancreatitis. Pancreatology. 2015 Jul;15(4 Suppl):S13-7. doi: 10.1016/j.pan.2015.03.010. Epub 2015 Apr 7.
Song L, Wormann S, Ai J, Neuhofer P, Lesina M, Diakopoulos KN, Ruess D, Treiber M, Witt H, Bassermann F, Halangk W, Steiner JM, Esposito I, Rosendahl J, Schmid RM, Riemann M, Algul H. BCL3 Reduces the Sterile Inflammatory Response in Pancreatic and Biliary Tissues. Gastroenterology. 2016 Feb;150(2):499-512.e20. doi: 10.1053/j.gastro.2015.10.017. Epub 2015 Oct 23.
Vege SS, Atwal T, Bi Y, Chari ST, Clemens MA, Enders FT. Pentoxifylline Treatment in Severe Acute Pancreatitis: A Pilot, Double-Blind, Placebo-Controlled, Randomized Trial. Gastroenterology. 2015 Aug;149(2):318-20.e3. doi: 10.1053/j.gastro.2015.04.019. Epub 2015 Jun 23.
Noel P, Patel K, Durgampudi C, Trivedi RN, de Oliveira C, Crowell MD, Pannala R, Lee K, Brand R, Chennat J, Slivka A, Papachristou GI, Khalid A, Whitcomb DC, DeLany JP, Cline RA, Acharya C, Jaligama D, Murad FM, Yadav D, Navina S, Singh VP. Peripancreatic fat necrosis worsens acute pancreatitis independent of pancreatic necrosis via unsaturated fatty acids increased in human pancreatic necrosis collections. Gut. 2016 Jan;65(1):100-11. doi: 10.1136/gutjnl-2014-308043. Epub 2014 Dec 10.
Gardner TB, Vege SS, Pearson RK, Chari ST. Fluid resuscitation in acute pancreatitis. Clin Gastroenterol Hepatol. 2008 Oct;6(10):1070-6. doi: 10.1016/j.cgh.2008.05.005. Epub 2008 Jul 10.
Pitchumoni CS, Agarwal N, Jain NK. Systemic complications of acute pancreatitis. Am J Gastroenterol. 1988 Jun;83(6):597-606.
Chey WY, Chang TM. Secretin: historical perspective and current status. Pancreas. 2014 Mar;43(2):162-82. doi: 10.1097/01.mpa.0000437325.29728.d6.
Chey WY, Chang TM. Secretin, 100 years later. J Gastroenterol. 2003;38(11):1025-35. doi: 10.1007/s00535-003-1235-3.
Hegyi P, Rakonczay Z. Insufficiency of electrolyte and fluid secretion by pancreatic ductal cells leads to increased patient risk for pancreatitis. Am J Gastroenterol. 2010 Sep;105(9):2119-20. doi: 10.1038/ajg.2010.191. No abstract available.
Takacs T, Rosztoczy A, Maleth J, Rakonczay Z Jr, Hegyi P. Intraductal acidosis in acute biliary pancreatitis. Pancreatology. 2013 Jul-Aug;13(4):333-5. doi: 10.1016/j.pan.2013.05.011. Epub 2013 Jun 10.
Hegyi P, Petersen OH. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology. Rev Physiol Biochem Pharmacol. 2013;165:1-30. doi: 10.1007/112_2013_14.
Ishiguro H, Naruse S, Kitagawa M, Mabuchi T, Kondo T, Hayakawa T, Case RM, Steward MC. Chloride transport in microperfused interlobular ducts isolated from guinea-pig pancreas. J Physiol. 2002 Feb 15;539(Pt 1):175-89. doi: 10.1113/jphysiol.2001.012490.
Ooi CY, Dorfman R, Cipolli M, Gonska T, Castellani C, Keenan K, Freedman SD, Zielenski J, Berthiaume Y, Corey M, Schibli S, Tullis E, Durie PR. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology. 2011 Jan;140(1):153-61. doi: 10.1053/j.gastro.2010.09.046. Epub 2010 Nov 9.
Freedman SD, Kern HF, Scheele GA. Pancreatic acinar cell dysfunction in CFTR(-/-) mice is associated with impairments in luminal pH and endocytosis. Gastroenterology. 2001 Oct;121(4):950-7. doi: 10.1053/gast.2001.27992.
Behrendorff N, Floetenmeyer M, Schwiening C, Thorn P. Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology. 2010 Nov;139(5):1711-20, 1720.e1-5. doi: 10.1053/j.gastro.2010.07.051. Epub 2010 Aug 3.
Hegyi P, Maleth J, Venglovecz V, Rakonczay Z Jr. Pancreatic ductal bicarbonate secretion: challenge of the acinar Acid load. Front Physiol. 2011 Jul 14;2:36. doi: 10.3389/fphys.2011.00036. eCollection 2011.
Goldenberg DE, Gordon SR, Gardner TB. Management of acute pancreatitis. Expert Rev Gastroenterol Hepatol. 2014 Aug;8(6):687-94. doi: 10.1586/17474124.2014.907524. Epub 2014 Apr 25.
Morimoto T, Noguchi Y, Sakai T, Shimbo T, Fukui T. Acute pancreatitis and the role of histamine-2 receptor antagonists: a meta-analysis of randomized controlled trials of cimetidine. Eur J Gastroenterol Hepatol. 2002 Jun;14(6):679-86. doi: 10.1097/00042737-200206000-00014.
Uhl W, Buchler MW, Malfertheiner P, Beger HG, Adler G, Gaus W. A randomised, double blind, multicentre trial of octreotide in moderate to severe acute pancreatitis. Gut. 1999 Jul;45(1):97-104. doi: 10.1136/gut.45.1.97.
Andriulli A, Leandro G, Clemente R, Festa V, Caruso N, Annese V, Lezzi G, Lichino E, Bruno F, Perri F. Meta-analysis of somatostatin, octreotide and gabexate mesilate in the therapy of acute pancreatitis. Aliment Pharmacol Ther. 1998 Mar;12(3):237-45. doi: 10.1046/j.1365-2036.1998.00295.x.
Wu BU, Hwang JQ, Gardner TH, Repas K, Delee R, Yu S, Smith B, Banks PA, Conwell DL. Lactated Ringer's solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin Gastroenterol Hepatol. 2011 Aug;9(8):710-717.e1. doi: 10.1016/j.cgh.2011.04.026. Epub 2011 May 12.
Levenick JM, Andrews CL, Purich ED, Gordon SR, Gardner TB. A phase II trial of human secretin infusion for refractory type B pain in chronic pancreatitis. Pancreas. 2013 May;42(4):596-600. doi: 10.1097/MPA.0b013e318273f3ec.
Stevens T, Conwell DL, Zuccaro G Jr, Van Lente F, Lopez R, Purich E, Fein S. A prospective crossover study comparing secretin-stimulated endoscopic and Dreiling tube pancreatic function testing in patients evaluated for chronic pancreatitis. Gastrointest Endosc. 2008 Mar;67(3):458-66. doi: 10.1016/j.gie.2007.07.028.
Conwell DL, Zuccaro G Jr, Vargo JJ, Trolli PA, Vanlente F, Obuchowski N, Dumot JA, O'laughlin C. An endoscopic pancreatic function test with synthetic porcine secretin for the evaluation of chronic abdominal pain and suspected chronic pancreatitis. Gastrointest Endosc. 2003 Jan;57(1):37-40. doi: 10.1067/mge.2003.14.
Renner IG, Wisner JR Jr. Ceruletide-induced acute pancreatitis in the dog and its amelioration by exogenous secretin. Int J Pancreatol. 1986 May;1(1):39-49. doi: 10.1007/BF02795238.
Renner IG, Wisner JR Jr, Lavigne BC. Partial restoration of pancreatic function by exogenous secretin in rats with ceruletide-induced acute pancreatitis. Dig Dis Sci. 1986 Mar;31(3):305-13. doi: 10.1007/BF01318123.
Niederau C, Ferrell LD, Grendell JH. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology. 1985 May;88(5 Pt 1):1192-204. doi: 10.1016/s0016-5085(85)80079-2.
Evander A, Lundquist I, Ihse I. Influence of gastrointestinal hormones on the course of acute experimental pancreatitis. Hepatogastroenterology. 1982 Aug;29(4):161-6.
Jowell PS, Branch MS, Fein SH, Purich ED, Kilaru R, Robuck G, d'Almada P, Baillie J. Intravenous synthetic secretin reduces the incidence of pancreatitis induced by endoscopic retrograde cholangiopancreatography. Pancreas. 2011 May;40(4):533-9. doi: 10.1097/MPA.0b013e3182152eb6.
Bakker OJ, van Brunschot S, van Santvoort HC, Besselink MG, Bollen TL, Boermeester MA, Dejong CH, van Goor H, Bosscha K, Ahmed Ali U, Bouwense S, van Grevenstein WM, Heisterkamp J, Houdijk AP, Jansen JM, Karsten TM, Manusama ER, Nieuwenhuijs VB, Schaapherder AF, van der Schelling GP, Schwartz MP, Spanier BW, Tan A, Vecht J, Weusten BL, Witteman BJ, Akkermans LM, Bruno MJ, Dijkgraaf MG, van Ramshorst B, Gooszen HG; Dutch Pancreatitis Study Group. Early versus on-demand nasoenteric tube feeding in acute pancreatitis. N Engl J Med. 2014 Nov 20;371(21):1983-93. doi: 10.1056/NEJMoa1404393.
Eatock FC, Chong P, Menezes N, Murray L, McKay CJ, Carter CR, Imrie CW. A randomized study of early nasogastric versus nasojejunal feeding in severe acute pancreatitis. Am J Gastroenterol. 2005 Feb;100(2):432-9. doi: 10.1111/j.1572-0241.2005.40587.x.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form: Drug Cohort ICF
Document Type: Informed Consent Form: Observational Cohort ICF
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2017-01
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.