Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
SUSPENDED
NA
40 participants
INTERVENTIONAL
2018-11-20
2023-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Two separate groups of 20 participants (40 total participants) will be studied. The first group will include 20 individuals between the ages of 18 to 40 years old with no history of falls or fear of falling. The first group will complete two sessions of harnessed video gaming balance training. The second group will include older adults over the age of 55 with self-reported falls or the fear of falling. The second group of older adults will complete two sessions of a reactive (slip) training protocol. For both groups, the first session participants will be randomly assigned to use either a standard fall-arrest harness or the new BWS harness system. At the second session, they will switch the harness used. The protocol will involve slips or gaming based balance training, initially of low intensity and then advanced by algorithm based on their response to the trial just prior. This will allow comparison of postural control, perturbation responses, motor learning, and confidence with the system between the two harness types.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Motor Flexibility in Multidirectional Balance Control
NCT06076525
Effects of Balance Training Exercises Fall Risk Among Elderly Females
NCT06750237
Characteristics of Balance Control to Unexpected Loss of Balance During Standing and Walking in Post-stroke Individuals
NCT02619175
Assessing and Improving Balance Using Platform Perturbations
NCT01207362
Balance Control During Gait
NCT02231827
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The investigators have designed and built a harness system that allows better control of more of the support parameters than much more expensive, commercially available, and BWS systems. This harness system better controls aspects such as: limiting fall distance, modulation of how the support responds to descents, assist to return to stand, and recording of all body movements. This will allow the investigation of questions about the impact of harness systems on learning and performance of postural control and effective use of harnesses in balance training.
The investigators have done extensive work with the Xbox system using Kinect, having designed a protocol and progression of games and surfaces that provides high intensity proactive balance training using Kinect. The investigators also train reactive balance through the use of a custom made platform called the Slip Trainer (MASS Rehab, Dayton, OH), along with a fall arresting harness and load measuring device. This allows the administration of repeated slip perturbations of a consistent and known intensity safely and efficiently.
Questions that still need to be answered include: Will patients challenge themselves more or engage in more intense activities with a harness? Does the support provided by a harness impact or interfere with the motor learning of the balance tasks? Could balance task learning be more effective with some degree of support vs. just a fall-arresting "backup" as is theorized with treadmill gait training? If so, what types and parameters are most effective? Would this type of support allow more intense training to be extended to people who are less mobile, more vulnerable or frail or more fearful, those who would not be able to participate in effective balance training otherwise?
This study will answer initial questions about the effectiveness and acceptance of the harness system by older adults in a reactive and by younger adults in a proactive protocol, and will provide pilot data for larger, external grants to investigate the broader questions among a much larger group of people. The larger impact will be translating the technology and understanding its impact clinically, allowing much greater intensity and more effective balance training for at risk populations.
The investigators propose to build a harness system in which the support within a single plane can be finely controlled and measured. This harness will have the following capabilities: limit height/fall to a pre-set vertical limit with ability to modulate the fall arrest kinematics, dynamic partial body weight support - to remain constant with center of mass (COM) movements, modulate by pre-set thresholds how the support responds to descent, assist to return to stand - with preset thresholds and levels of assist, monitor/measure/record: vertical and horizontal components of body COM movements, and provide feedback to users re: the support of being provided or re: other parameters, potentially in various modes (haptic, visual, auditory).
The individual purposes of this research are to (1) effectively use a prototype of an instrumented and actuated harness and support system, (2) demonstrate that this system can be used as designed during induced falls (reactive) and in place gaming (proactive) balance training protocols with the ability to modulate parameters as designed, measurements of harness system are accurate, and resultant output of the system matches intended parameters, and (3) demonstrate that the use of this system can allow provision of and study of varied balance training protocols, including: the measurements of the system, feedback of the system to participants, and the impact of the support parameters of the harness system on the task execution, learning and transfer.
Two separate groups of 20 participants (40 total participants) will be studied. Participants will be recruited from students, faculty and staff, as well as community members known to the investigator following the procedure outlined below. The first group will include 20 individuals between the ages of 18 to 40 years old with no history of falls or fear of falling. The first group will complete two sessions of harnessed video gaming balance training. The second group will include older adults over the age of 55 with self-reported falls or the fear of falling. The second group of older adults will complete two sessions of a reactive (slip) training protocol. For both groups, the first session participants will be randomly assigned to use a standard fall-arrest harness or the new BWS harness system. BWS harness can be set to support a predetermined portion of the person's body weight and maintain that support throughout the session. At the second session, they will switch the harness used. The protocol will involve balance training, advanced by algorithm, based on the participant's response to the trial just prior. This will allow comparison of postural control, perturbation responses, motor learning, and confidence with the system between the two harness types.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Younger Adults
First group will include 20 young adults with no history of falls or fear of falling. They will complete both interventions: Balance Training with Fall-Arrest Harness and Balance Training with Adjustable Harness.
Balance training with Fall-Arrest harness
This study will analyze the subjects' responses to balance training protocols with two types of harness support. The protocol will involve balance training, initially of low intensity and then advanced by an algorithm based on subjects' responses to the prior repetition of balance activity. For this intervention, the subjects will be using a standard Fall-Arrest harness for safety throughout, but no other external support. This will allow comparison of postural control, slip responses, motor learning, reliance on the harness and confidence with the system between the two harness types.
Balance training with Adjustable harness
This study will analyze the subjects' responses to balance training protocols with two types of harness support. The protocol will involve balance training, initially of low intensity and then advanced by an algorithm based on subjects' responses to the prior repetition of balance activity. For this intervention, the subjects will be using a motorized harness in which the support provided is adjustable. This will allow comparison of postural control, slip responses, motor learning, reliance on the harness and confidence with the system between the two harness types.
Older adults
Second group will include 20 older adults with a self-reported history of falls or fear of falling. They will complete both interventions: Balance Training with Fall-Arrest Harness and Balance Training with Adjustable Harness.
Balance training with Fall-Arrest harness
This study will analyze the subjects' responses to balance training protocols with two types of harness support. The protocol will involve balance training, initially of low intensity and then advanced by an algorithm based on subjects' responses to the prior repetition of balance activity. For this intervention, the subjects will be using a standard Fall-Arrest harness for safety throughout, but no other external support. This will allow comparison of postural control, slip responses, motor learning, reliance on the harness and confidence with the system between the two harness types.
Balance training with Adjustable harness
This study will analyze the subjects' responses to balance training protocols with two types of harness support. The protocol will involve balance training, initially of low intensity and then advanced by an algorithm based on subjects' responses to the prior repetition of balance activity. For this intervention, the subjects will be using a motorized harness in which the support provided is adjustable. This will allow comparison of postural control, slip responses, motor learning, reliance on the harness and confidence with the system between the two harness types.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Balance training with Fall-Arrest harness
This study will analyze the subjects' responses to balance training protocols with two types of harness support. The protocol will involve balance training, initially of low intensity and then advanced by an algorithm based on subjects' responses to the prior repetition of balance activity. For this intervention, the subjects will be using a standard Fall-Arrest harness for safety throughout, but no other external support. This will allow comparison of postural control, slip responses, motor learning, reliance on the harness and confidence with the system between the two harness types.
Balance training with Adjustable harness
This study will analyze the subjects' responses to balance training protocols with two types of harness support. The protocol will involve balance training, initially of low intensity and then advanced by an algorithm based on subjects' responses to the prior repetition of balance activity. For this intervention, the subjects will be using a motorized harness in which the support provided is adjustable. This will allow comparison of postural control, slip responses, motor learning, reliance on the harness and confidence with the system between the two harness types.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Completed Informed Consent
* Self-reported risk or fear of falling
Exclusion Criteria
* Allergic to adhesive tape
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Cleveland State University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Debbie Espy
Associate Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Debbie Espy
Role: PRINCIPAL_INVESTIGATOR
Cleveland State University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Cleveland State University
Cleveland, Ohio, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB-FY2018-324
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.