Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome Using Coronary CT Angiography and Computational Fluid Dynamics II (EMERALD II) Study
NCT ID: NCT03591328
Last Updated: 2022-08-23
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
429 participants
OBSERVATIONAL
2018-07-09
2022-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Determining the Mechanism of Myocardial Injury and Role of Coronary Disease in Type 2 Myocardial Infarction
NCT03338504
Retrospective Study to Estimate the Current Status of Patients With Non-Obstructive coroNary Artery Disease
NCT03584321
Angiography Derived Index of Microcirculatory Resistance in Patients With Acute Myocardial Infarction
NCT05696379
Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography
NCT00934037
Cohort of STEMI Patients 2
NCT05794022
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
OTHER
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Culprit
Plaques which is related with acute coronary syndrome
Coronary CT angiography
Comprehensive CCTA analysis of all culprit and non-culprit lesions to obtain their per-lesion and per-vessel quantitative, qualitative plaque, and hemodynamic features is performed by the independent core laboratory (HeartFlow, Mountain View, CA, USA) blinded to patient characteristics and ICA findings.
The current CCTA reporting variables, including % diameter stenosis, segment involvement score (SIS), and HRP features, are obtained for all lesions by another independent core laboratory (University of British Columbia, Vancouver, Canada) to construct a reference model. ICA and invasive imaging studies performed at the event of ACS are analyzed by the independent core laboratory (Samsung Medical Center, Seoul, Korea) to define the culprit lesion blinded to CCTA findings. Other independent experts match culprit and non-culprit lesion data between ICA and CCTA findings.
Non-culprit
Plaques which is not related with acute coronary syndrome
Coronary CT angiography
Comprehensive CCTA analysis of all culprit and non-culprit lesions to obtain their per-lesion and per-vessel quantitative, qualitative plaque, and hemodynamic features is performed by the independent core laboratory (HeartFlow, Mountain View, CA, USA) blinded to patient characteristics and ICA findings.
The current CCTA reporting variables, including % diameter stenosis, segment involvement score (SIS), and HRP features, are obtained for all lesions by another independent core laboratory (University of British Columbia, Vancouver, Canada) to construct a reference model. ICA and invasive imaging studies performed at the event of ACS are analyzed by the independent core laboratory (Samsung Medical Center, Seoul, Korea) to define the culprit lesion blinded to CCTA findings. Other independent experts match culprit and non-culprit lesion data between ICA and CCTA findings.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Coronary CT angiography
Comprehensive CCTA analysis of all culprit and non-culprit lesions to obtain their per-lesion and per-vessel quantitative, qualitative plaque, and hemodynamic features is performed by the independent core laboratory (HeartFlow, Mountain View, CA, USA) blinded to patient characteristics and ICA findings.
The current CCTA reporting variables, including % diameter stenosis, segment involvement score (SIS), and HRP features, are obtained for all lesions by another independent core laboratory (University of British Columbia, Vancouver, Canada) to construct a reference model. ICA and invasive imaging studies performed at the event of ACS are analyzed by the independent core laboratory (Samsung Medical Center, Seoul, Korea) to define the culprit lesion blinded to CCTA findings. Other independent experts match culprit and non-culprit lesion data between ICA and CCTA findings.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. The patients who underwent coronary CT angiography, regardless of the reason (for example, routine healthcare check-up, or evaluation for stable angina or atypical chest pain) prior to the acute event.
3. Time limit of CCTA: 1 months \~ 3 years prior to the event.
* Definition of ACS:
A. The patients with acute myocardial infarction should have cardiac enzyme elevation and identified culprit lesion confirmed by invasive coronary angiography, IVUS, or OCT.
B. The patients with unstable angina should have evidence of plaque rupture, which includes at least one of the following: (1) the presence of plaque rupture or haziness including thrombus at invasive coronary angiography, (2) angiographic stenosis ≥90%, or (3) the evidence of rupture confirmed by IVUS or OCT.
Exclusion Criteria
2. Patients with stents in two or more vessel territories prior to CCTA
3. Poor quality of CCTA which is unsuitable for plaque and CFD analysis
4. Patients with ACS culprit lesion in a stented segment
5. Patients with previous history of coronary artery bypass graft surgery
6. Patients with revascularization after CCTA and before ACS event (\*Patients with elective PCI for 1 vessel within 3 month after CCTA can be enrolled.
7. Secondary ACS due to other general medical conditions, such as sepsis, arrhythmia, bleeding, etc.
9. Poor quality CCTA images unsuitable for CFD and plaque analysis
10. No unprocessed CCTA data
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Inje University Ilsan Paik Hospital
OTHER
St. Mary's hostpital
UNKNOWN
Odense University Hospital
OTHER
University of Milan
OTHER
Imperial College London
OTHER
Aarhus University Hospital
OTHER
Semmelweis University
OTHER
Oxford University Hospitals NHS Trust
OTHER
Emory University
OTHER
Ehime University Graduate School of Medicine
OTHER
Gifu Heart Center
OTHER
Wakayama Medical University
OTHER
Keimyung University Dongsan Medical Center
OTHER
Seoul National University Bundang Hospital
OTHER
Seoul National University Hospital Healthcare System Gangnam Center
UNKNOWN
Chosun University Hospital
OTHER
Chungnam National University Hospital
OTHER
Monzino Cardiology Center
UNKNOWN
OLV Hospital
UNKNOWN
Monash Heart
UNKNOWN
University of British Columbia
OTHER
MOUNT SINAI HOSPITAL
OTHER
Tokyo Medical University Hachioji Medical Center
UNKNOWN
Tokai University
OTHER
St. Luke's International Hospital
UNKNOWN
Aichi Medical University
OTHER
Toyohashi Heart Center
OTHER
Kobe University Hospital
UNKNOWN
National Cerebral and Cardiovascular Center, Japan
OTHER
Shin Koga Hospital
UNKNOWN
Saiseikai Kumamoto Hospital
UNKNOWN
Tsuchiura Kyodo Hospital
UNKNOWN
Tokyo Medical Dental University
UNKNOWN
Loyola University
OTHER
Leiden University
OTHER
Weil Cornell Medical College
UNKNOWN
West Penn Allegheny Health System
OTHER
Ulsan Hospital
UNKNOWN
Ulsan University Hospital
OTHER
Seoul National University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Bon-Kwon Koo
Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Bon-Kwon Koo, MD,PhD
Role: STUDY_CHAIR
Seoul National University Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Seoul National University Hospital
Seoul, , South Korea
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Koskinas KC, Ughi GJ, Windecker S, Tearney GJ, Raber L. Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J. 2016 Feb 7;37(6):524-35a-c. doi: 10.1093/eurheartj/ehv642. Epub 2015 Dec 11.
Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW; PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011 Jan 20;364(3):226-35. doi: 10.1056/NEJMoa1002358.
Prati F, Romagnoli E, Gatto L, La Manna A, Burzotta F, Ozaki Y, Marco V, Boi A, Fineschi M, Fabbiocchi F, Taglieri N, Niccoli G, Trani C, Versaci F, Calligaris G, Ruscica G, Di Giorgio A, Vergallo R, Albertucci M, Biondi-Zoccai G, Tamburino C, Crea F, Alfonso F, Arbustini E. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. Eur Heart J. 2020 Jan 14;41(3):383-391. doi: 10.1093/eurheartj/ehz520.
Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014 Jul;11(7):390-402. doi: 10.1038/nrcardio.2014.60. Epub 2014 Apr 22.
Motoyama S, Ito H, Sarai M, Kondo T, Kawai H, Nagahara Y, Harigaya H, Kan S, Anno H, Takahashi H, Naruse H, Ishii J, Hecht H, Shaw LJ, Ozaki Y, Narula J. Plaque Characterization by Coronary Computed Tomography Angiography and the Likelihood of Acute Coronary Events in Mid-Term Follow-Up. J Am Coll Cardiol. 2015 Jul 28;66(4):337-46. doi: 10.1016/j.jacc.2015.05.069.
Yang S, Koo BK, Narula J. Interactions Between Morphological Plaque Characteristics and Coronary Physiology: From Pathophysiological Basis to Clinical Implications. JACC Cardiovasc Imaging. 2022 Jun;15(6):1139-1151. doi: 10.1016/j.jcmg.2021.10.009. Epub 2021 Dec 15.
Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013 Jun 4;61(22):2233-41. doi: 10.1016/j.jacc.2012.11.083. Epub 2013 Apr 3.
Choi G, Lee JM, Kim HJ, Park JB, Sankaran S, Otake H, Doh JH, Nam CW, Shin ES, Taylor CA, Koo BK. Coronary Artery Axial Plaque Stress and its Relationship With Lesion Geometry: Application of Computational Fluid Dynamics to Coronary CT Angiography. JACC Cardiovasc Imaging. 2015 Oct;8(10):1156-1166. doi: 10.1016/j.jcmg.2015.04.024. Epub 2015 Sep 9.
Park JB, Choi G, Chun EJ, Kim HJ, Park J, Jung JH, Lee MH, Otake H, Doh JH, Nam CW, Shin ES, De Bruyne B, Taylor CA, Koo BK. Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart. 2016 Oct 15;102(20):1655-61. doi: 10.1136/heartjnl-2016-309299. Epub 2016 Jun 14.
Lee JM, Choi G, Koo BK, Hwang D, Park J, Zhang J, Kim KJ, Tong Y, Kim HJ, Grady L, Doh JH, Nam CW, Shin ES, Cho YS, Choi SY, Chun EJ, Choi JH, Norgaard BL, Christiansen EH, Niemen K, Otake H, Penicka M, de Bruyne B, Kubo T, Akasaka T, Narula J, Douglas PS, Taylor CA, Kim HS. Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics. JACC Cardiovasc Imaging. 2019 Jun;12(6):1032-1043. doi: 10.1016/j.jcmg.2018.01.023. Epub 2018 Mar 14.
Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011 Aug 16;124(7):779-88. doi: 10.1161/CIRCULATIONAHA.111.021824. Epub 2011 Jul 25.
Lee JM, Choi G, Hwang D, Park J, Kim HJ, Doh JH, Nam CW, Na SH, Shin ES, Taylor CA, Koo BK. Impact of Longitudinal Lesion Geometry on Location of Plaque Rupture and Clinical Presentations. JACC Cardiovasc Imaging. 2017 Jun;10(6):677-688. doi: 10.1016/j.jcmg.2016.04.012. Epub 2016 Sep 21.
Chang HJ, Lin FY, Lee SE, Andreini D, Bax J, Cademartiri F, Chinnaiyan K, Chow BJW, Conte E, Cury RC, Feuchtner G, Hadamitzky M, Kim YJ, Leipsic J, Maffei E, Marques H, Plank F, Pontone G, Raff GL, van Rosendael AR, Villines TC, Weirich HG, Al'Aref SJ, Baskaran L, Cho I, Danad I, Han D, Heo R, Lee JH, Rivzi A, Stuijfzand WJ, Gransar H, Lu Y, Sung JM, Park HB, Berman DS, Budoff MJ, Samady H, Shaw LJ, Stone PH, Virmani R, Narula J, Min JK. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. J Am Coll Cardiol. 2018 Jun 5;71(22):2511-2522. doi: 10.1016/j.jacc.2018.02.079.
Williams MC, Kwiecinski J, Doris M, McElhinney P, D'Souza MS, Cadet S, Adamson PD, Moss AJ, Alam S, Hunter A, Shah ASV, Mills NL, Pawade T, Wang C, Weir McCall J, Bonnici-Mallia M, Murrills C, Roditi G, van Beek EJR, Shaw LJ, Nicol ED, Berman DS, Slomka PJ, Newby DE, Dweck MR, Dey D. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation. 2020 May 5;141(18):1452-1462. doi: 10.1161/CIRCULATIONAHA.119.044720. Epub 2020 Mar 16.
Yang S, Koo BK, Hoshino M, Lee JM, Murai T, Park J, Zhang J, Hwang D, Shin ES, Doh JH, Nam CW, Wang J, Chen S, Tanaka N, Matsuo H, Akasaka T, Choi G, Petersen K, Chang HJ, Kakuta T, Narula J. CT Angiographic and Plaque Predictors of Functionally Significant Coronary Disease and Outcome Using Machine Learning. JACC Cardiovasc Imaging. 2021 Mar;14(3):629-641. doi: 10.1016/j.jcmg.2020.08.025. Epub 2020 Nov 25.
Obuchowski NA, McClish DK. Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices. Stat Med. 1997 Jul 15;16(13):1529-42. doi: 10.1002/(sici)1097-0258(19970715)16:133.0.co;2-h.
Alimohamadi Y, Sepandi M. Considering the design effect in cluster sampling. J Cardiovasc Thorac Res. 2019;11(1):78. doi: 10.15171/jcvtr.2019.14. Epub 2019 Feb 17. No abstract available.
Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med. 2016 Jan 30;35(2):214-26. doi: 10.1002/sim.6787. Epub 2015 Nov 9.
Yang S, Jung JW, Park SH, Zhang J, Lee K, Hwang D, Lee KS, Na SH, Doh JH, Nam CW, Kim TH, Shin ES, Chun EJ, Choi SY, Kim HK, Hong YJ, Park HJ, Kim SY, Husic M, Lambrechtsen J, Jensen JM, Norgaard BL, Andreini D, Maurovich-Horvat P, Merkely B, Penicka M, de Bruyne B, Ihdayhid A, Ko B, Tzimas G, Leipsic J, Sanz J, Rabbat MG, Katchi F, Shah M, Tanaka N, Nakazato R, Asano T, Terashima M, Takashima H, Amano T, Sobue Y, Matsuo H, Otake H, Kubo T, Takahata M, Akasaka T, Kido T, Mochizuki T, Yokoi H, Okonogi T, Kawasaki T, Nakao K, Sakamoto T, Yonetsu T, Kakuta T, Yamauchi Y, Taylor CA, Bax JJ, Shaw LJ, Stone PH, Narula J, Koo BK. Prognostic Time Frame of Plaque and Hemodynamic Characteristics and Integrative Risk Prediction for Acute Coronary Syndrome. JACC Cardiovasc Imaging. 2025 Jul;18(7):784-795. doi: 10.1016/j.jcmg.2025.02.003. Epub 2025 Apr 23.
Koo BK, Yang S, Jung JW, Zhang J, Lee K, Hwang D, Lee KS, Doh JH, Nam CW, Kim TH, Shin ES, Chun EJ, Choi SY, Kim HK, Hong YJ, Park HJ, Kim SY, Husic M, Lambrechtsen J, Jensen JM, Norgaard BL, Andreini D, Maurovich-Horvat P, Merkely B, Penicka M, de Bruyne B, Ihdayhid A, Ko B, Tzimas G, Leipsic J, Sanz J, Rabbat MG, Katchi F, Shah M, Tanaka N, Nakazato R, Asano T, Terashima M, Takashima H, Amano T, Sobue Y, Matsuo H, Otake H, Kubo T, Takahata M, Akasaka T, Kido T, Mochizuki T, Yokoi H, Okonogi T, Kawasaki T, Nakao K, Sakamoto T, Yonetsu T, Kakuta T, Yamauchi Y, Bax JJ, Shaw LJ, Stone PH, Narula J. Artificial Intelligence-Enabled Quantitative Coronary Plaque and Hemodynamic Analysis for Predicting Acute Coronary Syndrome. JACC Cardiovasc Imaging. 2024 Sep;17(9):1062-1076. doi: 10.1016/j.jcmg.2024.03.015. Epub 2024 May 15.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NCT1869
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.