Effect of Melatonin on Seizure Outcome, Neuronal Damage and Quality of Life in Patients With Generalized Epilepsy
NCT ID: NCT03590197
Last Updated: 2020-09-03
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE4
104 participants
INTERVENTIONAL
2018-08-06
2020-04-12
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Pilot Study of Melatonin and Epilepsy
NCT00965575
Melatonin Intervention For Neurocognitive Deficits in the St. Jude Lifetime Cohort
NCT01700959
Trial of Melatonin to Improve Sleep in Children With Epilepsy and Neurodevelopmental Disabilities
NCT01161108
Acute Concussion and Melatonin
NCT04731974
Melatonin for Sleep in MS
NCT04035889
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Melatonin, an endogenous hormone, acting through MT1 and MT2 receptors exert a depressive effect on brain excitability and have been shown to exert an anticonvulsant activity in various animal models. In some clinical trials also it has been found that add-on melatonin therapy improves the clinical outcome. Uberoset al evaluated the sleep-wake pattern, plasma melatonin levels and the urinary excretion of its metabolite among children with severe epileptic disorders, before and after a therapeutic trial with melatonin. They found sleep efficiency was significantly higher and better controls of convulsive episodes were achieved with among patients who received melatonin. Goldberg-Stern et aland Elkhayat et al concluded that melatonin could be effective and safe for decreasing seizure frequency and severity in patients with intractable epilepsy. Gupta et al found that melatonin has the potential to improve quality of life in pediatric epilepsy because of its beneficial effects on sleep, its wide safety window, and its ability to cross the blood-brain barrier. In another study by Jain SV et al melatonin resulted in a statistically significant decrease in sleep onset latency and wakefulness after sleep onset. Guptaet al also concluded that add-on melatonin can be of promise in the pharmacotherapy of pediatric epilepsy and as an adjunct, can be a putative neuroprotector in conditions involving oxidative stress like epilepsies. Dabak et al and Brazil et measured melatonin in febrile seizure and temporal lobe epilepsy and found to be lower in epilepsy in comparison to the controls.
Our literature review reveals that till date most of the clinical studies on the effect of melatonin in epilepsy have been conducted in the pediatric population and there is no clinical trial done on its effect on seizure outcome, neuroprotective effect, sleep and circadian rhythm and quality of life in adult patients with epilepsy. So the present randomized clinical trial has been designed to fill the knowledge gap and evaluate the effect of add-on melatonin on seizure severity, neuronal damage and sleep quality in adult patients suffering from a generalized seizure.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Control Arm
The patients in Control Arm will receive placebo with valproate (20 mg/kg).
Placebo
Placebo with Valproate
Melatonin Arm
The Experimental Arm will receive tablet melatonin as an add-on to valproate. Melatonin will be prescribed 3 mg/day to the patients and will be advised to take 30 minutes before bedtime.
Melatonin 3 mg
Melatonin 3 mg/ day with Valproate
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Melatonin 3 mg
Melatonin 3 mg/ day with Valproate
Placebo
Placebo with Valproate
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients aged 18-60 years, of either sex.
* Treatment-naive patients or patients who had not taken any treatment for at least 4 weeks before inclusion.
Exclusion Criteria
* Patients with neuroendocrinal tumors.
* History of any invasive neurosurgical/non-invasive neuropsychiatric procedure.
* Patients who are already under treatment for the presenting conditions.
* Medication history of psychoactive or central nervous system depressant drugs.
* Pregnant and nursing women.
* Patients with a history of allergy to valproate, melatonin or other melatonin agonists.
* Patients with drug/alcohol abuse.
* Patients with any hepatic dysfunction.
18 Years
60 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
All India Institute of Medical Sciences, Bhubaneswar
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
RITUPARNA MAITI
Additional professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Debasish Hota, D.M
Role: STUDY_CHAIR
AIIMS, Bhubaneswar
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
All India Institute of Medical Sciences (AIIMS)
Bhubaneswar, Odisha, India
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Cramer JA, Perrine K, Devinsky O, Bryant-Comstock L, Meador K, Hermann B. Development and cross-cultural translations of a 31-item quality of life in epilepsy inventory. Epilepsia. 1998 Jan;39(1):81-8. doi: 10.1111/j.1528-1157.1998.tb01278.x.
Vimala PV, Bhutada PS, Patel FR. Therapeutic potential of agomelatine in epilepsy and epileptic complications. Med Hypotheses. 2014 Jan;82(1):105-10. doi: 10.1016/j.mehy.2013.11.017. Epub 2013 Nov 21.
Cockerell OC, Sander JW, Shorvon SD. Remission of epilepsy. The NGPS. National General Practice Study of Epilepsy. Lancet. 1995 Nov 4;346(8984):1228. doi: 10.1016/s0140-6736(95)92933-9. No abstract available.
MacDonald BK, Johnson AL, Goodridge DM, Cockerell OC, Sander JW, Shorvon SD. Factors predicting prognosis of epilepsy after presentation with seizures. Ann Neurol. 2000 Dec;48(6):833-41.
Yalyn O, Arman F, Erdogan F, Kula M. A comparison of the circadian rhythms and the levels of melatonin in patients with diurnal and nocturnal complex partial seizures. Epilepsy Behav. 2006 May;8(3):542-6. doi: 10.1016/j.yebeh.2005.12.015. Epub 2006 Mar 9.
Costa-Lotufo LV, Fonteles MM, Lima IS, de Oliveira AA, Nascimento VS, de Bruin VM, Viana GS. Attenuating effects of melatonin on pilocarpine-induced seizures in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2002 Apr;131(4):521-9. doi: 10.1016/s1532-0456(02)00037-6.
Borowicz KK, Kaminski R, Gasior M, Kleinrok Z, Czuczwar SJ. Influence of melatonin upon the protective action of conventional anti-epileptic drugs against maximal electroshock in mice. Eur Neuropsychopharmacol. 1999 Mar;9(3):185-90. doi: 10.1016/s0924-977x(98)00022-4.
Lima E, Cabral FR, Cavalheiro EA, Naffah-Mazzacoratti Mda G, Amado D. Melatonin administration after pilocarpine-induced status epilepticus: a new way to prevent or attenuate postlesion epilepsy? Epilepsy Behav. 2011 Apr;20(4):607-12. doi: 10.1016/j.yebeh.2011.01.018. Epub 2011 Mar 30.
Yahyavi-Firouz-Abadi N, Tahsili-Fahadan P, Riazi K, Ghahremani MH, Dehpour AR. Involvement of nitric oxide pathway in the acute anticonvulsant effect of melatonin in mice. Epilepsy Res. 2006 Feb;68(2):103-13. doi: 10.1016/j.eplepsyres.2005.09.057. Epub 2006 Jan 10.
Goldberg-Stern H, Oren H, Peled N, Garty BZ. Effect of melatonin on seizure frequency in intractable epilepsy: a pilot study. J Child Neurol. 2012 Dec;27(12):1524-8. doi: 10.1177/0883073811435916. Epub 2012 Feb 28.
Gupta M, Aneja S, Kohli K. Add-on melatonin improves quality of life in epileptic children on valproate monotherapy: a randomized, double-blind, placebo-controlled trial. Epilepsy Behav. 2004 Jun;5(3):316-21. doi: 10.1016/j.yebeh.2004.01.012.
Singer MA. Effects of furosemide and ethacrynic acid on cation transport across phospholipid bilayer membranes. Can J Physiol Pharmacol. 1974 Oct;52(5):930-41. doi: 10.1139/y74-122. No abstract available.
Gupta M, Aneja S, Kohli K. Add-on melatonin improves sleep behavior in children with epilepsy: randomized, double-blind, placebo-controlled trial. J Child Neurol. 2005 Feb;20(2):112-5. doi: 10.1177/08830738050200020501.
Gupta M, Gupta YK, Agarwal S, Aneja S, Kohli K. A randomized, double-blind, placebo controlled trial of melatonin add-on therapy in epileptic children on valproate monotherapy: effect on glutathione peroxidase and glutathione reductase enzymes. Br J Clin Pharmacol. 2004 Nov;58(5):542-7. doi: 10.1111/j.1365-2125.2004.02210.x.
Bertaina-Anglade V, Drieu-La-Rochelle C, Mocaer E, Seguin L. Memory facilitating effects of agomelatine in the novel object recognition memory paradigm in the rat. Pharmacol Biochem Behav. 2011 Jun;98(4):511-7. doi: 10.1016/j.pbb.2011.02.015. Epub 2011 Feb 22.
Lopes MC, Quera-Salva MA, Guilleminault C. Non-REM sleep instability in patients with major depressive disorder: subjective improvement and improvement of non-REM sleep instability with treatment (Agomelatine). Sleep Med. 2007 Dec;9(1):33-41. doi: 10.1016/j.sleep.2007.01.011. Epub 2007 Sep 7.
AlAhmed S, Herbert J. Effect of agomelatine and its interaction with the daily corticosterone rhythm on progenitor cell proliferation in the dentate gyrus of the adult rat. Neuropharmacology. 2010 Nov;59(6):375-9. doi: 10.1016/j.neuropharm.2010.05.008. Epub 2010 Jun 1.
Bourin M, Mocaer E, Porsolt R. Antidepressant-like activity of S 20098 (agomelatine) in the forced swimming test in rodents: involvement of melatonin and serotonin receptors. J Psychiatry Neurosci. 2004 Mar;29(2):126-33.
Amudhan S, Gururaj G, Satishchandra P. Epilepsy in India I: Epidemiology and public health. Ann Indian Acad Neurol. 2015 Jul-Sep;18(3):263-77. doi: 10.4103/0972-2327.160093.
Fisher RS, Cross JH, D'Souza C, French JA, Haut SR, Higurashi N, Hirsch E, Jansen FE, Lagae L, Moshe SL, Peltola J, Roulet Perez E, Scheffer IE, Schulze-Bonhage A, Somerville E, Sperling M, Yacubian EM, Zuberi SM. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia. 2017 Apr;58(4):531-542. doi: 10.1111/epi.13671. Epub 2017 Mar 8.
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol. 2016;56:361-83. doi: 10.1146/annurev-pharmtox-010814-124742. Epub 2015 Oct 23.
Sanchez-Barcelo EJ, Rueda N, Mediavilla MD, Martinez-Cue C, Reiter RJ. Clinical Uses of Melatonin in Neurological Diseases and Mental and Behavioural Disorders. Curr Med Chem. 2017 Nov 20;24(35):3851-3878. doi: 10.2174/0929867324666170718105557.
Tchekalarova J, Petkova Z, Pechlivanova D, Moyanova S, Kortenska L, Mitreva R, Lozanov V, Atanasova D, Lazarov N, Stoynev A. Prophylactic treatment with melatonin after status epilepticus: effects on epileptogenesis, neuronal damage, and behavioral changes in a kainate model of temporal lobe epilepsy. Epilepsy Behav. 2013 Apr;27(1):174-87. doi: 10.1016/j.yebeh.2013.01.009. Epub 2013 Feb 28.
Mevissen M, Ebert U. Anticonvulsant effects of melatonin in amygdala-kindled rats. Neurosci Lett. 1998 Nov 20;257(1):13-6. doi: 10.1016/s0304-3940(98)00790-3.
Rocha AKAA, de Lima E, Amaral F, Peres R, Cipolla-Neto J, Amado D. Altered MT1 and MT2 melatonin receptors expression in the hippocampus of pilocarpine-induced epileptic rats. Epilepsy Behav. 2017 Jun;71(Pt A):23-34. doi: 10.1016/j.yebeh.2017.01.020. Epub 2017 Apr 28.
Ma Y, Sun X, Li J, Jia R, Yuan F, Wei D, Jiang W. Melatonin Alleviates the Epilepsy-Associated Impairments in Hippocampal LTP and Spatial Learning Through Rescue of Surface GluR2 Expression at Hippocampal CA1 Synapses. Neurochem Res. 2017 May;42(5):1438-1448. doi: 10.1007/s11064-017-2200-5. Epub 2017 Feb 18.
Fenoglio-Simeone K, Mazarati A, Sefidvash-Hockley S, Shin D, Wilke J, Milligan H, Sankar R, Rho JM, Maganti R. Anticonvulsant effects of the selective melatonin receptor agonist ramelteon. Epilepsy Behav. 2009 Sep;16(1):52-7. doi: 10.1016/j.yebeh.2009.07.022. Epub 2009 Aug 13.
Brigo F, Igwe SC, Del Felice A. Melatonin as add-on treatment for epilepsy. Cochrane Database Syst Rev. 2016 Aug 11;2016(8):CD006967. doi: 10.1002/14651858.CD006967.pub4.
Aguiar CC, Almeida AB, Araujo PV, Vasconcelos GS, Chaves EM, do Vale OC, Macedo DS, de Sousa FC, Viana GS, Vasconcelos SM. Anticonvulsant effects of agomelatine in mice. Epilepsy Behav. 2012 Jul;24(3):324-8. doi: 10.1016/j.yebeh.2012.04.134. Epub 2012 Jun 2.
O'Donoghue MF, Duncan JS, Sander JW. The National Hospital Seizure Severity Scale: a further development of the Chalfont Seizure Severity Scale. Epilepsia. 1996 Jun;37(6):563-71. doi: 10.1111/j.1528-1157.1996.tb00610.x.
Buysse DJ, Reynolds CF 3rd, Monk TH, Hoch CC, Yeager AL, Kupfer DJ. Quantification of subjective sleep quality in healthy elderly men and women using the Pittsburgh Sleep Quality Index (PSQI). Sleep. 1991 Aug;14(4):331-8.
Lerche H, Daniluk J, Lotay N, DeRossett S, Edwards S, Brandt C. Efficacy and safety of ezogabine/retigabine as adjunctive therapy to specified single antiepileptic medications in an open-label study of adults with partial-onset seizures. Seizure. 2015 Aug;30:93-100. doi: 10.1016/j.seizure.2015.06.002. Epub 2015 Jun 8.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IEC/AIIMSBBSR/PGTh/18-19/02
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.