Effect of Spinal Cord Stimulation on Gait and Balance in Chronic Low Back Pain Patients
NCT ID: NCT03586882
Last Updated: 2018-07-16
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
100 participants
INTERVENTIONAL
2018-06-15
2020-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Spinal Cord Stimulation for Chronic and Intractable Back Pain
NCT00370695
Spinal Cord Stimulation (SCS) for Neuropathic Pain of Back or Lower Extremity
NCT00399841
Prospective Randomized Feasibility Study Comparing Manual vs. Automatic Position-Adaptive Spinal Cord Stimulation With Surgical Leads
NCT01874899
Spinal Cord Stimulation Research Study
NCT00768872
Placebo Effect In Spinal Cord Electrical Stimulation for Pain
NCT06585033
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
SCS uses electrical signals to decrease nociception of impulses arising from painful areas in the spine and or leg. In order to accomplish this goal, SCS involves implantation of a small electrical pulse generator, along with thin leads strategically placed into the epidural space. Stimulation provided by the generator to electrodes on the leads inhibits ascending pain signals, thereby decreasing pain perception. Occasionally, some patients feel a mild paresthesia as a result of the stimulation.
While the effectiveness of SCS on reduction of subjective pain complaints is now well-established, such improvement may not translate into improved functional ability. Previous research found that, for FBSS patients treated with SCS, patients' scores on Oswestry Disability index did not correlate significantly with improvements in function as measured by an accelerometer contained within the stimulator device. Very few studies have examined the effect of SCS on objectively-measured functional abilities, including gait and balance. Those studies suffer from a small sample size and lack of electromyography (EMG) and full body kinematics analyses. Despite that, those studies did find improvement in the spatiotemporal variables (i.e. gait speed, step length and width) while other variables (ground reaction force and trunk motion) were not significantly different using the SCS.
Therefore, the purpose of this study is to evaluate the effect of SCS, on the biomechanics of the lower extremities and spine, using dynamic EMG, video motion capture, and force plate analysis, during gait and static balance testing, in patients with chronic low back and/or leg pain, before and after intervention. In addition this study will compare these same biomechanical parameters found in the chronic low back pain and /or leg pain patients to an asymptomatic control group.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Spinal Cord Stimulation Group
Gait and balance testing as well as self-reported outcome assessments to be administered before and after surgery
Spinal Cord Stimulation
Stimulation provided by the generator to electrodes on the leads inhibits ascending pain signals, thereby decreasing pain perception.
Control Group
Gait and balance testing to be administered once in healthy subjects
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Spinal Cord Stimulation
Stimulation provided by the generator to electrodes on the leads inhibits ascending pain signals, thereby decreasing pain perception.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Considered to be a candidate for SCS
1. Leg pain and/or LBP lasting than 6 months.
2. Therapy consists of a short trial with a percutaneous implantation of neurostimulator electrode(s) in the epidural space for assessing a candidate's suitability for ongoing treatment with a permanent surgically implanted SCS. Performance and documentation of an effective trial is required for consideration of permanent SCS.
3. The implantation of the stimulator is used only as a late or last resort for patients with chronic intractable pain.
4. Other treatment modalities (pharmacologic, surgical, physical/and psychological therapies) have been tried and did not prove satisfactory; were judged unsuitable, or were contraindicated for the patient.
5. Patient has undergone appropriate psychological screening, including psychometric testing using the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF), and diagnosis by a multidisciplinary team before implantation; to include patient education, discussion and disclosure including an extensive discussion of the risk and benefits of therapy.
6. All the facilities, equipment, and professional support personnel required for the proper diagnosis, treatment, training, and follow-up of the patient are available.
7. All trials which proceed to permanent implantation should demonstrate adequate documentation to support the decision. A successful trial should be associated with at least 50% reduction of target pain, a reduction of analgesic medications and show some element of functional improvement (i.e. sitting, standing and walking tolerances).
3. Able to ambulate without assistance and stand without assistance with eyes open for a minimum of 10 seconds
4. Able and willing to attend and perform the activities described in the informed consent within the boundaries of the timelines set forth for pre-, and post-operative follow-up
Exclusion Criteria
2. BMI higher than 35
3. Neurological disorder, diabetic neuropathy or other disease that impairs the patient's ability to ambulate or stand without assistance
4. Major trauma to the pelvis
5. Pregnant or wishing to become pregnant during the study
6. Previous spinal surgery that would preclude the safe percutaneous or permanent implantation of the SCS leads
7. Previous history of spinal infection either iatrogenic or denovo
8. Previous SCS attempts either successful or not
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Medtronic
INDUSTRY
Texas Back Institute
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Ram Haddas, PhD
Role: PRINCIPAL_INVESTIGATOR
Texas Back Institute
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Texas Back Institute
Plano, Texas, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Gee L, Smith HC, Ghulam-Jelani Z, Khan H, Prusik J, Feustel PJ, McCallum SE, Pilitsis JG. Spinal Cord Stimulation for the Treatment of Chronic Pain Reduces Opioid Use and Results in Superior Clinical Outcomes When Used Without Opioids. Neurosurgery. 2019 Jan 1;84(1):217-226. doi: 10.1093/neuros/nyy065.
Waddell G. 1987 Volvo award in clinical sciences. A new clinical model for the treatment of low-back pain. Spine (Phila Pa 1976). 1987 Sep;12(7):632-44. doi: 10.1097/00007632-198709000-00002.
Block AR, Gatchel RJ, Deardorff WW, et al. The Psychology of Spine Surgeryed. Washington, D.C.: American Psychological Association, 2003.
Frey ME, Manchikanti L, Benyamin RM, Schultz DM, Smith HS, Cohen SP. Spinal cord stimulation for patients with failed back surgery syndrome: a systematic review. Pain Physician. 2009 Mar-Apr;12(2):379-97.
Mekhail NA, Mathews M, Nageeb F, Guirguis M, Mekhail MN, Cheng J. Retrospective review of 707 cases of spinal cord stimulation: indications and complications. Pain Pract. 2011 Mar-Apr;11(2):148-53. doi: 10.1111/j.1533-2500.2010.00407.x. Epub 2010 Sep 8.
Eldabe S, Kumar K, Buchser E, Taylor RS. An analysis of the components of pain, function, and health-related quality of life in patients with failed back surgery syndrome treated with spinal cord stimulation or conventional medical management. Neuromodulation. 2010 Jul;13(3):201-9. doi: 10.1111/j.1525-1403.2009.00271.x. Epub 2010 Feb 22.
Agari T, Date I. Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson's disease. Neurol Med Chir (Tokyo). 2012;52(7):470-4. doi: 10.2176/nmc.52.470.
Turner JA, Hollingworth W, Comstock BA, Deyo RA. Spinal cord stimulation for failed back surgery syndrome: outcomes in a workers' compensation setting. Pain. 2010 Jan;148(1):14-25. doi: 10.1016/j.pain.2009.08.014. Epub 2009 Oct 28.
de Andrade DC, Bendib B, Hattou M, Keravel Y, Nguyen JP, Lefaucheur JP. Neurophysiological assessment of spinal cord stimulation in failed back surgery syndrome. Pain. 2010 Sep;150(3):485-491. doi: 10.1016/j.pain.2010.06.001. Epub 2010 Jun 29.
North RB, Kidd DH, Zahurak M, James CS, Long DM. Spinal cord stimulation for chronic, intractable pain: experience over two decades. Neurosurgery. 1993 Mar;32(3):384-94; discussion 394-5. doi: 10.1227/00006123-199303000-00008.
Geurts JW, Joosten EA, van Kleef M. Current status and future perspectives of spinal cord stimulation in treatment of chronic pain. Pain. 2017 May;158(5):771-774. doi: 10.1097/j.pain.0000000000000847. No abstract available.
Goudman L, Smet I, Marien P, De Jaeger M, De Groote S, Huysmans E, Putman K, Van Buyten JP, Buyl R, Moens M. Is the Self-Reporting of Failed Back Surgery Syndrome Patients Treated With Spinal Cord Stimulation in Line With Objective Measurements? Neuromodulation. 2018 Jan;21(1):93-100. doi: 10.1111/ner.12719. Epub 2017 Nov 3.
Rijken NH, Vonhogen LH, Duysens J, Keijsers NL. The effect of spinal cord stimulation (SCS) on static balance and gait. Neuromodulation. 2013 May-Jun;16(3):244-50; discussion 249-50. doi: 10.1111/j.1525-1403.2012.00512.x. Epub 2012 Sep 25.
Brugliera L, De Luca A, Corna S, Bertolotto M, Checchia GA, Cioni M, Capodaglio P, Lentino C. Spinal Cord Stimulation in Failed Back Surgery Syndrome: Effects on Posture and Gait-A Preliminary 3D Biomechanical Study. Pain Res Manag. 2017;2017:3059891. doi: 10.1155/2017/3059891. Epub 2017 Sep 25.
Al-Kaisy A, Palmisani S, Smith TE, Pang D, Lam K, Burgoyne W, Houghton R, Hudson E, Lucas J. 10 kHz High-Frequency Spinal Cord Stimulation for Chronic Axial Low Back Pain in Patients With No History of Spinal Surgery: A Preliminary, Prospective, Open Label and Proof-of-Concept Study. Neuromodulation. 2017 Jan;20(1):63-70. doi: 10.1111/ner.12563. Epub 2016 Dec 26.
Sumner LA, Lofland K. Spinal cord stimulation: Subjective pain intensity and presurgical correlates in chronic pain patients. Chronic Illn. 2014 Sep;10(3):157-66. doi: 10.1177/1742395313504233. Epub 2013 Sep 18.
Wolter T, Kieselbach K. Cervical spinal cord stimulation: an analysis of 23 patients with long-term follow-up. Pain Physician. 2012 May-Jun;15(3):203-12.
Vaughan CL, Davis BL, O'Conner JC. Dynamics of Human Gait. 2nd ed. Cape Town, South Africa: Kiboho Publishers, 1999.
Arumugam A, Milosavljevic S, Woodley S, Sole G. Effects of external pelvic compression on form closure, force closure, and neuromotor control of the lumbopelvic spine--a systematic review. Man Ther. 2012 Aug;17(4):275-84. doi: 10.1016/j.math.2012.01.010. Epub 2012 Mar 2.
Lethem J, Slade PD, Troup JD, Bentley G. Outline of a Fear-Avoidance Model of exaggerated pain perception--I. Behav Res Ther. 1983;21(4):401-8. doi: 10.1016/0005-7967(83)90009-8. No abstract available.
Miller RP, Kori S, Todd D. The Tampa Scale: a measure of kinesiophobia. Clin J Pain 1991;7:51-2.
Lundberg MKE, Styf J, Carlsson SG. A psychometric evaluation of the Tampa Scale for Kinesiophobia - from a physiotherapeutic perspective. Physiotherapy Theory and Practice 2004;20:121-33.
Lundberg M, Styf J, Jansson B. On what patients does the Tampa Scale for Kinesiophobia fit? Physiother Theory Pract. 2009 Oct;25(7):495-506. doi: 10.3109/09593980802662160.
Bunketorp L, Carlsson J, Kowalski J, Stener-Victorin E. Evaluating the reliability of multi-item scales: a non-parametric approach to the ordered categorical structure of data collected with the Swedish version of the Tampa Scale for Kinesiophobia and the Self-Efficacy Scale. J Rehabil Med. 2005 Sep;37(5):330-4. doi: 10.1080/16501970510036411.
Wertli MM, Rasmussen-Barr E, Weiser S, Bachmann LM, Brunner F. The role of fear avoidance beliefs as a prognostic factor for outcome in patients with nonspecific low back pain: a systematic review. Spine J. 2014 May 1;14(5):816-36.e4. doi: 10.1016/j.spinee.2013.09.036. Epub 2013 Oct 18.
Waddell G, Newton M, Henderson I, Somerville D, Main CJ. A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 1993 Feb;52(2):157-168. doi: 10.1016/0304-3959(93)90127-B.
Rainville J, Smeets RJ, Bendix T, Tveito TH, Poiraudeau S, Indahl AJ. Fear-avoidance beliefs and pain avoidance in low back pain--translating research into clinical practice. Spine J. 2011 Sep;11(9):895-903. doi: 10.1016/j.spinee.2011.08.006. Epub 2011 Sep 9.
Ben-Porath YS, Tellegen A. MMPI-2-RF Manual for Administration, Scoring, and Interpretationed. Minneapolis, MN: University of Minnesota Press, 2008.
Block AR, Marek RJ, Ben-Porath YS, Kukal D. Associations Between Pre-Implant Psychosocial Factors and Spinal Cord Stimulation Outcome: Evaluation Using the MMPI-2-RF. Assessment. 2017 Jan;24(1):60-70. doi: 10.1177/1073191115601518. Epub 2015 Aug 28.
Block AR, Ben-Porath YS, Marek RJ. Psychological risk factors for poor outcome of spine surgery and spinal cord stimulator implant: a review of the literature and their assessment with the MMPI-2-RF. Clin Neuropsychol. 2013;27(1):81-107. doi: 10.1080/13854046.2012.721007. Epub 2012 Sep 21.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
TBIRF-Medt
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.