N-Acetylcysteine in Biliary Atresia After Kasai Portoenterostomy

NCT ID: NCT03499249

Last Updated: 2024-03-26

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE2

Total Enrollment

13 participants

Study Classification

INTERVENTIONAL

Study Start Date

2018-05-18

Study Completion Date

2024-03-23

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Biliary atresia (BA) is a devastating liver disease of infancy, characterized by bile duct obstruction leading to liver fibrosis, cirrhosis, and eventual need for transplantation in most cases. BA is treated with Kasai portoenterostomy (KP). KPs can achieve bile drainage and improve outcomes. However, even with standard evidence of "good bile flow," bile flow rarely normalizes completely and liver disease continues to progress.

In this study, the investigators test whether intravenous N-acetylcysteine (NAC) can improve bile flow after KP. The rationale is that NAC leads to synthesis of glutathione, which is a powerful stimulator of bile flow. The primary objective is to determine whether NAC normalizes total serum bile acid (TSBA) concentrations within 24 weeks of KP. Achieving normal TSBAs is uncommon with current standard-of-care, and is predicted to be associated with better long-term outcomes. The secondary objectives are to describe how other parameters commonly followed in BA change with NAC therapy, as well as report adverse events occurring with therapy and in the first two years of life. This study follows the "minimax" Phase 2 clinical trial design.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Biliary atresia (BA) is a disease characterized by fibro-obliteration of extrahepatic bile ducts leading to impaired bile flow (Sokol et al., 2007). BA is treated with the Kasai portoenterostomy (KP), an operation which connects the liver directly to the intestine in attempt to relieve bile back-up and promote bile flow. KPs have variable success. KPs occasionally normalize bile flow and stop disease progression (Jimenez-Rivera et al., 2013). More commonly, however, bile flow never completely normalizes after KP. This can be detected by elevated total bilirubin (TB) or conjugated bilirubin (Bc) serum concentrations, or, when TB and Bc are normal, elevated total serum bile acids (TSBA) concentrations (Bezerra et al., 2014; Shneider et al., 2015; Venkat et al., 2014). Impaired flow leads to fibrosis, cirrhosis, and eventual need for liver transplantation. Given these uneven results, therapies are urgently needed to enhance the KP's success.

The investigators hypothesize that N-acetylcysteine (NAC) will improve outcomes after KP, because NAC is a precursor for the powerful choleretic molecule glutathione (Ballatori and Truong, 1989, 1992, Ballatori et al., 1986, 1989). The hypothesis assumes that better bile flow will lead to better outcomes. This is supported by previous reports demonstrating that good bile flow correlates with slower disease progression in BA. For example, a recent study showed infants with good bile flow after KP were significantly less likely to develop failure-to-thrive, ascites, hypoalbuminemia, or coagulopathy in the first two years of life (Shneider et al., 2015). Furthermore, these infants had significantly higher transplant-free survival in the same time period. In this study, TB \<2.0 mg/dL within three months of KP was used as the marker for good bile flow.

NAC has a number of properties that make it an especially attractive potential therapeutic agent. First, glutathione creates an osmotic gradient in the bile duct lumen which drives one-third of total bile flow in humans (the other drivers are bile acids and secretin/bicarbonate) (Ballatori and Truong, 1989, 1992, Ballatori et al., 1986, 1989). Second, NAC is a Food and Drug Administration-approved therapy for another serious liver condition in neonates and children (acetaminophen overdose). It has also been used for other liver and non-liver indications in neonates, with few reported adverse events (Ahola et al., 2003; Flynn et al., 2003; Jenkins et al., 2016; Kortsalioudaki et al., 2008; Mager et al., 2008; Soghier and Brion, 2006; Squires et al., 2013; Wiest et al., 2014). Third, glutathione is an anti-oxidant, which could scavenge the free radicals contributing to cirrhosis. Preclinical studies are also promising, with glutathione's strong choleretic properties best established in rat flow studies and NAC's hepatoprotective effects documented in rescuing different mouse models of cholestasis (Ballatori et al., 1986; Galicia-Moreno et al., 2009, 2012; Tahan et al., 2007).

To test the hypotheses, the investigators will administer intravenous NAC continuously for seven days and determine the number of subjects with normal TSBAs (0-10 umol/L) within 24 weeks of KP. In addition, markers of BA progression, such as abnormal laboratory results, failure-to-thrive, and occurrence of complications related to chronic liver disease, will be described over the first two years of life. Finally, all adverse events occurring during NAC infusion and in the 21 days after its completion will be recorded. The study employs the two-stage "minimax" Phase 2 clinical trial design, a design commonly used in oncological trials to determine whether a particularly therapy has sufficient activity to warrant a larger Phase 3 trial (Simon, 1989). The two-stage "minimax" design offers two distinct advantages compared to other designs: (i) early termination if the drug is not efficacious; and (ii) small sample sizes, because historical controls rather than a separate control arm are used.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Biliary Atresia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

This is a Phase 2 clinical trial using the two-stage "minimax" design described by Simon (Simon, 1989). As a Phase 2 trial, the trial's objective is to determine whether NAC has sufficient biological activity as adjunctive therapy for BA to warrant further study. By choosing the two-stage "minimax" design, we gain two advantages: (i) early termination if the drug is not efficacious, and (ii) using historical controls and therefore an overall smaller sample size to test the hypothesis, i.e., no randomization or control arm. This study design only identifies large effects (response \>20%). For BA this is appropriate, because the field is in need of a robust therapy that can substantially limit liver damage and delay/prevent need for liver transplantation.
Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

N-Acetylcysteine Treatment

Will receive continuous intravenous NAC therapy (6.25 mg/kg/hour of 10 mg/ml solution, or 0.625 ml/kg/hour, to give 150 mg/kg/day), starting within 24 hours of completion of KP and lasting for a total of 7 days

Group Type EXPERIMENTAL

N-Acetyl cysteine

Intervention Type DRUG

Intravenous NAC therapy (6.25 mg/kg/hour of 10 mg/ml solution, or 0.625 ml/kg/hour, to give 150 mg/kg/day), starting within 24 hours of completion of KP and lasting for a total of 7 days

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

N-Acetyl cysteine

Intravenous NAC therapy (6.25 mg/kg/hour of 10 mg/ml solution, or 0.625 ml/kg/hour, to give 150 mg/kg/day), starting within 24 hours of completion of KP and lasting for a total of 7 days

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Age less than or equal to 90 days at time of KP (standard age range in which KPs are performed)
2. BA diagnosis made by intraoperative cholangiography and KP performed at Texas Children's Hospital, Texas Medical Center Campus
3. Legal guardian(s) sign consent after understanding risks and investigational nature of study

Exclusion Criteria

1. Decompensated liver disease (INR \>1.3) despite parenteral Vitamin K administration)
2. KP not performed for any reason (i.e., normal intraoperative cholangiography, or liver found to be too diseased intraoperatively to proceed with KP)
3. Active respiratory infection
4. Renal impairment, as defined by having an eGFR \< 60 mL/min/1.73m2 or creatinine clearance \< 60 mL/min (https://www.niddk.nih.gov/health-information/communication-programs/nkdep/laboratory-evaluation/glomerular-filtration-rate-calculators/children-conventional-units)
5. Presence of severe concurrent illnesses, such as pulmonary (i.e., bronchopulmonary dysplasia), neurological, cardiovascular, metabolic, endocrine, and renal disorders, which may be congenital or acquired, that would interfere with the conduct and results of the study
Minimum Eligible Age

0 Days

Maximum Eligible Age

90 Days

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Baylor College of Medicine

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Sanjiv Harpavat

Assistant Professor, Department of Pediatrics

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Sanjiv Harpavat, MD. PhD

Role: PRINCIPAL_INVESTIGATOR

Baylor College of Medicine

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Texas Children's Hospital and Baylor College of Medicine

Houston, Texas, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Ahola T, Lapatto R, Raivio KO, Selander B, Stigson L, Jonsson B, Jonsbo F, Esberg G, Stovring S, Kjartansson S, Stiris T, Lossius K, Virkola K, Fellman V. N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial. J Pediatr. 2003 Dec;143(6):713-9. doi: 10.1067/S0022-3476(03)00419-0.

Reference Type BACKGROUND
PMID: 14657813 (View on PubMed)

Ballatori N, Truong AT. Relation between biliary glutathione excretion and bile acid-independent bile flow. Am J Physiol. 1989 Jan;256(1 Pt 1):G22-30. doi: 10.1152/ajpgi.1989.256.1.G22.

Reference Type BACKGROUND
PMID: 2912148 (View on PubMed)

Ballatori N, Truong AT. Glutathione as a primary osmotic driving force in hepatic bile formation. Am J Physiol. 1992 Nov;263(5 Pt 1):G617-24. doi: 10.1152/ajpgi.1992.263.5.G617.

Reference Type BACKGROUND
PMID: 1443136 (View on PubMed)

Ballatori N, Jacob R, Boyer JL. Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J Biol Chem. 1986 Jun 15;261(17):7860-5.

Reference Type BACKGROUND
PMID: 2872220 (View on PubMed)

Ballatori N, Truong AT, Ma AK, Boyer JL. Determinants of glutathione efflux and biliary GSH/GSSG ratio in perfused rat liver. Am J Physiol. 1989 Mar;256(3 Pt 1):G482-90. doi: 10.1152/ajpgi.1989.256.3.G482.

Reference Type BACKGROUND
PMID: 2564253 (View on PubMed)

Bezerra JA, Spino C, Magee JC, Shneider BL, Rosenthal P, Wang KS, Erlichman J, Haber B, Hertel PM, Karpen SJ, Kerkar N, Loomes KM, Molleston JP, Murray KF, Romero R, Schwarz KB, Shepherd R, Suchy FJ, Turmelle YP, Whitington PF, Moore J, Sherker AH, Robuck PR, Sokol RJ; Childhood Liver Disease Research and Education Network (ChiLDREN). Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA. 2014 May 7;311(17):1750-9. doi: 10.1001/jama.2014.2623.

Reference Type BACKGROUND
PMID: 24794368 (View on PubMed)

Flynn DM, Mohan N, McKiernan P, Beath S, Buckels J, Mayer D, Kelly DA. Progress in treatment and outcome for children with neonatal haemochromatosis. Arch Dis Child Fetal Neonatal Ed. 2003 Mar;88(2):F124-7. doi: 10.1136/fn.88.2.f124.

Reference Type BACKGROUND
PMID: 12598501 (View on PubMed)

Galicia-Moreno M, Rodriguez-Rivera A, Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Moreno MG, Muriel P. N-acetylcysteine prevents carbon tetrachloride-induced liver cirrhosis: role of liver transforming growth factor-beta and oxidative stress. Eur J Gastroenterol Hepatol. 2009 Aug;21(8):908-14. doi: 10.1097/MEG.0b013e32831f1f3a.

Reference Type BACKGROUND
PMID: 19398917 (View on PubMed)

Galicia-Moreno M, Favari L, Muriel P. Antifibrotic and antioxidant effects of N-acetylcysteine in an experimental cholestatic model. Eur J Gastroenterol Hepatol. 2012 Feb;24(2):179-85. doi: 10.1097/MEG.0b013e32834f3123.

Reference Type BACKGROUND
PMID: 22241216 (View on PubMed)

Jenkins DD, Wiest DB, Mulvihill DM, Hlavacek AM, Majstoravich SJ, Brown TR, Taylor JJ, Buckley JR, Turner RP, Rollins LG, Bentzley JP, Hope KE, Barbour AB, Lowe DW, Martin RH, Chang EY. Fetal and Neonatal Effects of N-Acetylcysteine When Used for Neuroprotection in Maternal Chorioamnionitis. J Pediatr. 2016 Jan;168:67-76.e6. doi: 10.1016/j.jpeds.2015.09.076. Epub 2015 Nov 3.

Reference Type BACKGROUND
PMID: 26545726 (View on PubMed)

Jimenez-Rivera C, Jolin-Dahel KS, Fortinsky KJ, Gozdyra P, Benchimol EI. International incidence and outcomes of biliary atresia. J Pediatr Gastroenterol Nutr. 2013 Apr;56(4):344-54. doi: 10.1097/MPG.0b013e318282a913.

Reference Type BACKGROUND
PMID: 23263590 (View on PubMed)

Kortsalioudaki C, Taylor RM, Cheeseman P, Bansal S, Mieli-Vergani G, Dhawan A. Safety and efficacy of N-acetylcysteine in children with non-acetaminophen-induced acute liver failure. Liver Transpl. 2008 Jan;14(1):25-30. doi: 10.1002/lt.21246.

Reference Type BACKGROUND
PMID: 18161828 (View on PubMed)

Lynch RM, Robertson R. Anaphylactoid reactions to intravenous N-acetylcysteine: a prospective case controlled study. Accid Emerg Nurs. 2004 Jan;12(1):10-5. doi: 10.1016/j.aaen.2003.07.001.

Reference Type BACKGROUND
PMID: 14700565 (View on PubMed)

Mager DR, Marcon M, Wales P, Pencharz PB. Use of N-acetyl cysteine for the treatment of parenteral nutrition-induced liver disease in children receiving home parenteral nutrition. J Pediatr Gastroenterol Nutr. 2008 Feb;46(2):220-3. doi: 10.1097/MPG.0b013e3180653ce6. No abstract available.

Reference Type BACKGROUND
PMID: 18223385 (View on PubMed)

Shneider BL, Magee JC, Karpen SJ, Rand EB, Narkewicz MR, Bass LM, Schwarz K, Whitington PF, Bezerra JA, Kerkar N, Haber B, Rosenthal P, Turmelle YP, Molleston JP, Murray KF, Ng VL, Wang KS, Romero R, Squires RH, Arnon R, Sherker AH, Moore J, Ye W, Sokol RJ; Childhood Liver Disease Research Network (ChiLDReN). Total Serum Bilirubin within 3 Months of Hepatoportoenterostomy Predicts Short-Term Outcomes in Biliary Atresia. J Pediatr. 2016 Mar;170:211-7.e1-2. doi: 10.1016/j.jpeds.2015.11.058. Epub 2015 Dec 24.

Reference Type BACKGROUND
PMID: 26725209 (View on PubMed)

Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989 Mar;10(1):1-10. doi: 10.1016/0197-2456(89)90015-9.

Reference Type BACKGROUND
PMID: 2702835 (View on PubMed)

Soghier LM, Brion LP. Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst Rev. 2006 Oct 18;2006(4):CD004869. doi: 10.1002/14651858.CD004869.pub2.

Reference Type BACKGROUND
PMID: 17054219 (View on PubMed)

Sokol RJ, Shepherd RW, Superina R, Bezerra JA, Robuck P, Hoofnagle JH. Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology. 2007 Aug;46(2):566-81. doi: 10.1002/hep.21790.

Reference Type BACKGROUND
PMID: 17661405 (View on PubMed)

Squires RH, Dhawan A, Alonso E, Narkewicz MR, Shneider BL, Rodriguez-Baez N, Olio DD, Karpen S, Bucuvalas J, Lobritto S, Rand E, Rosenthal P, Horslen S, Ng V, Subbarao G, Kerkar N, Rudnick D, Lopez MJ, Schwarz K, Romero R, Elisofon S, Doo E, Robuck PR, Lawlor S, Belle SH; Pediatric Acute Liver Failure Study Group. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial. Hepatology. 2013 Apr;57(4):1542-9. doi: 10.1002/hep.26001. Epub 2013 Feb 4.

Reference Type BACKGROUND
PMID: 22886633 (View on PubMed)

Tahan G, Tarcin O, Tahan V, Eren F, Gedik N, Sahan E, Biberoglu N, Guzel S, Bozbas A, Tozun N, Yucel O. The effects of N-acetylcysteine on bile duct ligation-induced liver fibrosis in rats. Dig Dis Sci. 2007 Dec;52(12):3348-54. doi: 10.1007/s10620-006-9717-9. Epub 2007 Apr 12.

Reference Type BACKGROUND
PMID: 17436097 (View on PubMed)

Venkat VL, Shneider BL, Magee JC, Turmelle Y, Arnon R, Bezerra JA, Hertel PM, Karpen SJ, Kerkar N, Loomes KM, Molleston J, Murray KF, Ng VL, Raghunathan T, Rosenthal P, Schwartz K, Sherker AH, Sokol RJ, Teckman J, Wang K, Whitington PF, Heubi JE; Childhood Liver Disease Research and Education Network. Total serum bilirubin predicts fat-soluble vitamin deficiency better than serum bile acids in infants with biliary atresia. J Pediatr Gastroenterol Nutr. 2014 Dec;59(6):702-7. doi: 10.1097/MPG.0000000000000547.

Reference Type BACKGROUND
PMID: 25419594 (View on PubMed)

Wiest DB, Chang E, Fanning D, Garner S, Cox T, Jenkins DD. Antenatal pharmacokinetics and placental transfer of N-acetylcysteine in chorioamnionitis for fetal neuroprotection. J Pediatr. 2014 Oct;165(4):672-7.e2. doi: 10.1016/j.jpeds.2014.06.044. Epub 2014 Jul 23.

Reference Type BACKGROUND
PMID: 25064164 (View on PubMed)

Harpavat S, Borovsky KA, Scheurer ME, Cavallo L, Erhiawarie FE, Vasudevan S, Vogel AM, Cerminara D, Tessier EM, Patel KR, Devaraj S, Shneider BL. A phase 2 trial of short-term intravenous N-acetylcysteine in biliary atresia after Kasai portoenterostomy. Hepatol Commun. 2025 Jun 9;9(7):e0729. doi: 10.1097/HC9.0000000000000729. eCollection 2025 Jul 1.

Reference Type DERIVED
PMID: 40489761 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

135796

Identifier Type: OTHER

Identifier Source: secondary_id

H-40962

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

GCSF Adjunct Therapy for Biliary Atresia
NCT03395028 COMPLETED EARLY_PHASE1
Fatty Liver Disease in Obese Children
NCT02117700 COMPLETED PHASE1/PHASE2
Quantitative Liver Function Tests Using Cholates
NCT01907074 ACTIVE_NOT_RECRUITING PHASE2