Metformin Pharmacology in Human Cancers: A Proof of Principle Study
NCT ID: NCT03477162
Last Updated: 2023-10-03
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
EARLY_PHASE1
18 participants
INTERVENTIONAL
2018-05-15
2021-11-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Cancer Chemoprevention by Metformin Hydrochloride in Oral Potentially Malignant Lesions
NCT03685409
Neoadjuvant Chemotherapy With or Without Metformin in Early Breast Cancer.
NCT04387630
Comparison of the Effectiveness Metformin for Deceasing Proliferative Marker in Endometrial Cancer Cells
NCT03618472
Cancer Chemoprevention by Metformin Hydrochloride Compared to Placebo in Oral Potentially Malignant Lesions
NCT03684707
Impact Of Metformin In Rectal Cancer Patients
NCT06728982
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Metformin
Patients enrolled will be treated with metformin (administered orally; 750 mg QD for 4 days, then 750 mg BID for 3-6 days; or clinically indicated metformin) for a total of 7-10 days prior to surgery, up until the night before surgery.
Metformin
Metformin will be given to patients prior to surgery.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Metformin
Metformin will be given to patients prior to surgery.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients with multicentric disease are eligible. Samples from all available tumors are requested for research purposes.
* Patients with Type 2 diabetes mellitus being treated with metformin (any dose) for a clinical indication at the time of study enrollment are eligible, and will continue metformin treatment as clinically indicated during the presurgical study period. Their dose of metformin will NOT be changed.
* Patients not on metformin at the time of study entry must be willing to take metformin extended release (Glucophage® XR, 750 mg QD for 4 days, then 750 mg BID for 3-6 days) for a total of 7-10 days prior to surgery.
* Patients do not require a diagnosis of diabetes to be enrolled in the study.
* All patients must be willing to keep a drug diary indicating the dates and times of metformin administration.
Patients must meet the following clinical laboratory criteria:
* Absolute neutrophil count (ANC) greater than or equal to 1,500/mm3 and platelet count greater than or equal to 75,000/mm3.
* Total bilirubin less than or equal to 1.5x the upper limit of the normal range (ULN).
* Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) less than or equal to 3x ULN.
* Estimated glomerular filtration rate (eGFR) \> 60 mL/min/1.73m2 or estimated creatinine clearance (eCrCL) \> 60 mL/min
* Ability to give informed consent.
* Patients must be willing to provide 20 milliliters (mL) of blood for research use.
* Patient must be willing to provide consent for use of archived tissue for research.
Exclusion Criteria
* Patients who, at the time of study entry, are not taking metformin for a clinical indication, and who will need a radiographic analysis with an iodinated contrast agent during the metformin study treatment period.
* This criterion does not apply to patients taking clinically indicated metformin at the time of study entry.
* History of liver disease as defined with liver function tests (LFTs) above those in the inclusion
* Known hypersensitivity to metformin.
* History of reactive hypoglycemia.
* Active or history of lactic acidosis, metabolic acidosis, or diabetic ketoacidosis.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Dartmouth-Hitchcock Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Joseph D. Phillips, MD.
Staff Physician, Thoracic Surgery
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Joseph Phillips, MD
Role: PRINCIPAL_INVESTIGATOR
Dartmouth-Hitchcock Medical Center
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Dartmouth Hitchcock Medical Center
Lebanon, New Hampshire, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B; American Diabetes Association; European Association for Study of Diabetes. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009 Jan;32(1):193-203. doi: 10.2337/dc08-9025. Epub 2008 Oct 22.
Witters LA. The blooming of the French lilac. J Clin Invest. 2001 Oct;108(8):1105-7. doi: 10.1172/JCI14178. No abstract available.
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012 Mar;122(6):253-70. doi: 10.1042/CS20110386.
Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia. 2013 Sep;56(9):1898-906. doi: 10.1007/s00125-013-2991-0. Epub 2013 Jul 9.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001 Oct;108(8):1167-74. doi: 10.1172/JCI13505.
Gunton JE, Delhanty PJ, Takahashi S, Baxter RC. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab. 2003 Mar;88(3):1323-32. doi: 10.1210/jc.2002-021394.
El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000 Jan 7;275(1):223-8. doi: 10.1074/jbc.275.1.223.
DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995 Aug 31;333(9):541-9. doi: 10.1056/NEJM199508313330902.
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998 Sep 12;352(9131):854-65.
Hurst RT, Lee RW. Increased incidence of coronary atherosclerosis in type 2 diabetes mellitus: mechanisms and management. Ann Intern Med. 2003 Nov 18;139(10):824-34. doi: 10.7326/0003-4819-139-10-200311180-00010.
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011 Feb;50(2):81-98. doi: 10.2165/11534750-000000000-00000.
Christensen MM, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H, Brosen K. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011 Dec;21(12):837-50. doi: 10.1097/FPC.0b013e32834c0010.
Timmins P, Donahue S, Meeker J, Marathe P. Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin Pharmacokinet. 2005;44(7):721-9. doi: 10.2165/00003088-200544070-00004.
Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007 May;117(5):1422-31. doi: 10.1172/JCI30558.
Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981 Aug;12(2):235-46. doi: 10.1111/j.1365-2125.1981.tb01206.x.
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. Diabetes Care. 2010 Jul;33(7):1674-85. doi: 10.2337/dc10-0666.
Bodmer M, Meier C, Krahenbuhl S, Jick SS, Meier CR. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care. 2010 Jun;33(6):1304-8. doi: 10.2337/dc09-1791. Epub 2010 Mar 18.
Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2010 Nov;3(11):1451-61. doi: 10.1158/1940-6207.CAPR-10-0157. Epub 2010 Oct 12.
Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005 Jun 4;330(7503):1304-5. doi: 10.1136/bmj.38415.708634.F7. Epub 2005 Apr 22. No abstract available.
Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, Hsu L, Hung MC, Hortobagyi GN, Gonzalez-Angulo AM. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009 Jul 10;27(20):3297-302. doi: 10.1200/JCO.2009.19.6410. Epub 2009 Jun 1.
Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology. 2009 Aug;137(2):482-8. doi: 10.1053/j.gastro.2009.04.013. Epub 2009 Apr 16.
Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009 Sep;32(9):1620-5. doi: 10.2337/dc08-2175. Epub 2009 Jun 29.
Wright JL, Stanford JL. Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study. Cancer Causes Control. 2009 Nov;20(9):1617-22. doi: 10.1007/s10552-009-9407-y. Epub 2009 Aug 4.
Xu H, Aldrich MC, Chen Q, Liu H, Peterson NB, Dai Q, Levy M, Shah A, Han X, Ruan X, Jiang M, Li Y, Julien JS, Warner J, Friedman C, Roden DM, Denny JC. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc. 2015 Jan;22(1):179-91. doi: 10.1136/amiajnl-2014-002649. Epub 2014 Jul 22.
Chae YK, Arya A, Malecek MK, Shin DS, Carneiro B, Chandra S, Kaplan J, Kalyan A, Altman JK, Platanias L, Giles F. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget. 2016 Jun 28;7(26):40767-40780. doi: 10.18632/oncotarget.8194.
Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007 Nov 15;67(22):10804-12. doi: 10.1158/0008-5472.CAN-07-2310.
Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S, Steele VE, Rao CV. Antidiabetic Drug Metformin Prevents Progression of Pancreatic Cancer by Targeting in Part Cancer Stem Cells and mTOR Signaling. Transl Oncol. 2013 Dec 1;6(6):649-59. doi: 10.1593/tlo.13556. eCollection 2013 Dec 1.
Zakikhani M, Blouin MJ, Piura E, Pollak MN. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat. 2010 Aug;123(1):271-9. doi: 10.1007/s10549-010-0763-9. Epub 2010 Feb 5.
Jalving M, Gietema JA, Lefrandt JD, de Jong S, Reyners AK, Gans RO, de Vries EG. Metformin: taking away the candy for cancer? Eur J Cancer. 2010 Sep;46(13):2369-80. doi: 10.1016/j.ejca.2010.06.012. Epub 2010 Jul 23.
Poloz Y, Stambolic V. Obesity and cancer, a case for insulin signaling. Cell Death Dis. 2015 Dec 31;6(12):e2037. doi: 10.1038/cddis.2015.381.
Camacho L, Dasgupta A, Jiralerspong S. Metformin in breast cancer - an evolving mystery. Breast Cancer Res. 2015 Jun 26;17(1):88. doi: 10.1186/s13058-015-0598-8.
Dowling RJ, Lam S, Bassi C, Mouaaz S, Aman A, Kiyota T, Al-Awar R, Goodwin PJ, Stambolic V. Metformin Pharmacokinetics in Mouse Tumors: Implications for Human Therapy. Cell Metab. 2016 Apr 12;23(4):567-8. doi: 10.1016/j.cmet.2016.03.006. No abstract available.
Kajbaf F, De Broe ME, Lalau JD. Therapeutic Concentrations of Metformin: A Systematic Review. Clin Pharmacokinet. 2016 Apr;55(4):439-59. doi: 10.1007/s40262-015-0323-x.
Glucophage XR product insert. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjcrMLO8cPXAhWGZiYKHVe1DoMQFggrMAA&url=https%3A%2F%2Fpackageinserts.bms.com%2Fpi%2Fpi_glucophage.pdf&usg=AOvVaw2zAbyMgwlF7wxaXv60vtv3.
Lipska KJ, Bailey CJ, Inzucchi SE. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care. 2011 Jun;34(6):1431-7. doi: 10.2337/dc10-2361. No abstract available.
Wadamori N, Shinohara R, Ishihara Y. Photoacoustic depth profiling of a skin model for non-invasive glucose measurement. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5644-7. doi: 10.1109/IEMBS.2008.4650494.
Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012 Apr;35(4):731-7. doi: 10.2337/dc11-1299.
Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S, Wiley C, Selvin E, Wilson R, Bass EB, Brancati FL. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007 Sep 18;147(6):386-99. doi: 10.7326/0003-4819-147-6-200709180-00178. Epub 2007 Jul 16.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
D17188
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.