Nitric Oxide Administration During Pediatric Cardiopulmonary Bypass Surgery to Prevent Platelet Activation
NCT ID: NCT03455218
Last Updated: 2020-08-13
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE2/PHASE3
40 participants
INTERVENTIONAL
2018-04-25
2019-05-05
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Platelet Function With New Pediatric Oxygenator and Heparin and Non Heparin Coating in Pediatric Cardiac Surgery
NCT01648712
Effects of Nitric Oxide on the Endothelium During Hemolysis.
NCT03748082
Fresh Frozen Plasma and Plasmalyte ® for Priming Cardiopulmonary Bypass in Infants and Children
NCT02567786
Preoperative Use of Romiplostim in Thrombocytopenic Patients Undergoing Cardiac Surgery.
NCT07278661
Point-of-care Assessment of Thrombin Generation and Platelet Function in Children Requiring Cardiopulmonary Bypass
NCT02833025
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Further investigation by Dr. Debra Newman in her lab at the Blood Research Institute delineated the platelet defect associated with CPB in the neonates more clearly. Dr. Newman found a significant decrease in the platelet responsiveness to thrombin receptor activating protein (TRAP), thromboxane A2 analog (U46619), and collagen-related peptide (CRP). Further analysis revealed that the effect of CPB on platelet responsiveness to TRAP and U46619 is likely dependent on its effect on platelet count, whereas CPB affects platelet responsiveness to CRP independently of platelet count.
In children, postoperative blood loss and transfusion of blood products has been shown to contribute significantly to the morbidity and mortality of surgeries that require CPB (2, 3). In addition to the need for blood product replacement, the activation of platelets contributes to the intense inflammatory reaction seen in surgeries requiring CPB (4). Patients with a less intense inflammatory response post-operatively generally do better with less morbidity (5).
The oxygenator membrane surface of the CPB pump is a large contributor to the surface area of CPB circuit. As a major contributor to the surface area of the circuit and the location of the gas interface, the oxygenator is a significant contributor to the hemostatic and inflammatory stimulus of CPB. Advances in oxygenator technology have modified the surface to prevent interaction with the blood, but no artificial surface has been found to be as inert as the natural endothelium of the vasculature (5).
A major mechanism by which endothelial surfaces inhibit activation of platelets is by producing nitric oxide (6). Nitric oxide is lipophilic and traverses cellular membranes where it acts on intracellular signaling pathways in platelets to prevent platelet activation and aggregation (7). The artificial surface of the CPB pump does not produce nitric oxide and hence is devoid of this potent inhibitor of platelet activation.
In multiple experimental ex-vivo models of CPB, the addition of nitric oxide to the sweep gas of the oxygenator resulted in preserved platelet counts, preserved platelet function, and decreased markers of platelet activation (8-11).
Multiple clinical trials of nitric oxide administration during CPB have shown positive results. Chung et al. showed in a group of 41 adults undergoing coronary artery surgery requiring CPB that the addition of nitric oxide to the oxygenator resulted in a preservation of platelet numbers, a decrease in markers of platelet activation, and less post-operative blood loss (12). Checchia et al. investigated the effect of nitric oxide in a group of sixteen infants undergoing repair of tetralogy of Fallot and found the patients treated with nitric oxide had an improvement in clinical outcomes of length of stay in the intensive care unit and number of hours requiring mechanical ventilation (13). James et al. showed a 50% decrease in the incidence of low cardiac output syndrome in a randomized trial of 198 children. The effect was most profound in the younger children and those undergoing the most complex repairs (14). These patients are also the ones demonstrated to have the most intense inflammatory reaction postoperatively (15).
Despite these promising studies, several questions remain. The mechanism of platelet preservation has not been delineated. The collaboration between clinicians at Children's Hospital of Wisconsin and Dr. Newman at the Blood Center of Wisconsin has been established and has experience in investigating the effects of CPB on platelets in infants. This collaboration is poised to help define the mechanism of nitric oxide in preserving platelet function during CPB in infants. All studies to date have been single center and underpowered to investigate clinical outcomes of interest such as mortality and length of hospital stay. Dr. Niebler has begun to assemble a multi-center study team. Local data is necessary to help guide the power calculation in determining the sample size for this larger study and to demonstrate the capabilities of the local institution in leading a trial of this magnitude.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Nitric Oxide
20 ppm of Nitric Oxide delivered to the oxygenator via the INOmax device for the duration of the cardiopulmonary bypass time
Nitric Oxide
20 ppm of Nitric Oxide gas delivered to the oxygenator for the duration of cardiopulmonary bypass
INOmax
All patients will have the INOmax device connected to the oxygenator
Placebo
INOmax device attached to the oxygenator, but no gas is delivered through the device
Placebo
INOmax device connected to oxygenator, but no gas is delivered
INOmax
All patients will have the INOmax device connected to the oxygenator
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Nitric Oxide
20 ppm of Nitric Oxide gas delivered to the oxygenator for the duration of cardiopulmonary bypass
Placebo
INOmax device connected to oxygenator, but no gas is delivered
INOmax
All patients will have the INOmax device connected to the oxygenator
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Undergoing cardiac surgery with the use of cardiopulmonary bypass
Exclusion Criteria
* Pre-operative need for extracorporeal membrane oxygenation or mechanical circulatory support
* Known hypersensitivity to nitric oxide
* Known hemostatic or thrombotic disorder that results in an altered transfusion/anticoagulation protocol
1 Year
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Mallinckrodt
INDUSTRY
Clinical & Translational Science Institute of Southeast Wisconsin
OTHER
Versiti
OTHER
Medical College of Wisconsin
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Robert Niebler, MD
Associate Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Children's Hospital of Wisconsin
Milwaukee, Wisconsin, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Despotis GJ, Avidan MS, Hogue CW Jr. Mechanisms and attenuation of hemostatic activation during extracorporeal circulation. Ann Thorac Surg. 2001 Nov;72(5):S1821-31. doi: 10.1016/s0003-4975(01)03211-8.
Chambers LA, Cohen DM, Davis JT. Transfusion patterns in pediatric open heart surgery. Transfusion. 1996 Feb;36(2):150-4. doi: 10.1046/j.1537-2995.1996.36296181928.x.
Petaja J, Lundstrom U, Leijala M, Peltola K, Siimes MA. Bleeding and use of blood products after heart operations in infants. J Thorac Cardiovasc Surg. 1995 Mar;109(3):524-9. doi: 10.1016/S0022-5223(95)70284-9.
Rinder CS, Bonan JL, Rinder HM, Mathew J, Hines R, Smith BR. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood. 1992 Mar 1;79(5):1201-5.
Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest. 1997 Sep;112(3):676-92. doi: 10.1378/chest.112.3.676.
Radomski MW, Vallance P, Whitley G, Foxwell N, Moncada S. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc Res. 1993 Jul;27(7):1380-2. doi: 10.1093/cvr/27.7.1380.
Naseem KM, Roberts W. Nitric oxide at a glance. Platelets. 2011;22(2):148-52. doi: 10.3109/09537104.2010.522629. Epub 2010 Nov 4.
Annich GM, Meinhardt JP, Mowery KA, Ashton BA, Merz SI, Hirschl RB, Meyerhoff ME, Bartlett RH. Reduced platelet activation and thrombosis in extracorporeal circuits coated with nitric oxide release polymers. Crit Care Med. 2000 Apr;28(4):915-20. doi: 10.1097/00003246-200004000-00001.
de Graaf JC, Banga JD, Moncada S, Palmer RM, de Groot PG, Sixma JJ. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation. 1992 Jun;85(6):2284-90. doi: 10.1161/01.cir.85.6.2284.
Konishi R, Shimizu R, Firestone L, Walters FR, Wagner WR, Federspiel WJ, Konishi H, Hattler BG. Nitric oxide prevents human platelet adhesion to fiber membranes in whole blood. ASAIO J. 1996 Sep-Oct;42(5):M850-3. doi: 10.1097/00002480-199609000-00111.
Mellgren K, Friberg LG, Mellgren G, Hedner T, Wennmalm A, Wadenvik H. Nitric oxide in the oxygenator sweep gas reduces platelet activation during experimental perfusion. Ann Thorac Surg. 1996 Apr;61(4):1194-8. doi: 10.1016/0003-4975(96)00017-3.
Chung A, Wildhirt SM, Wang S, Koshal A, Radomski MW. Combined administration of nitric oxide gas and iloprost during cardiopulmonary bypass reduces platelet dysfunction: a pilot clinical study. J Thorac Cardiovasc Surg. 2005 Apr;129(4):782-90. doi: 10.1016/j.jtcvs.2004.06.049.
Checchia PA, Bronicki RA, Muenzer JT, Dixon D, Raithel S, Gandhi SK, Huddleston CB. Nitric oxide delivery during cardiopulmonary bypass reduces postoperative morbidity in children--a randomized trial. J Thorac Cardiovasc Surg. 2013 Sep;146(3):530-6. doi: 10.1016/j.jtcvs.2012.09.100. Epub 2012 Dec 8.
James C, Millar J, Horton S, Brizard C, Molesworth C, Butt W. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med. 2016 Nov;42(11):1744-1752. doi: 10.1007/s00134-016-4420-6. Epub 2016 Sep 30.
Eisses MJ, Chandler WL. Cardiopulmonary bypass parameters and hemostatic response to cardiopulmonary bypass in infants versus children. J Cardiothorac Vasc Anesth. 2008 Feb;22(1):53-9. doi: 10.1053/j.jvca.2007.06.006. Epub 2007 Aug 22.
Miller BE, Mochizuki T, Levy JH, Bailey JM, Tosone SR, Tam VK, Kanter KR. Predicting and treating coagulopathies after cardiopulmonary bypass in children. Anesth Analg. 1997 Dec;85(6):1196-202. doi: 10.1097/00000539-199712000-00003.
Williams GD, Bratton SL, Riley EC, Ramamoorthy C. Coagulation tests during cardiopulmonary bypass correlate with blood loss in children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1999 Aug;13(4):398-404. doi: 10.1016/s1053-0770(99)90210-0.
Berger JT, Holubkov R, Reeder R, Wessel DL, Meert K, Berg RA, Bell MJ, Tamburro R, Dean JM, Pollack MM; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Morbidity and mortality prediction in pediatric heart surgery: Physiological profiles and surgical complexity. J Thorac Cardiovasc Surg. 2017 Aug;154(2):620-628.e6. doi: 10.1016/j.jtcvs.2017.01.050. Epub 2017 Feb 10.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
1111115-1NO in CPB 001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.