Perifoveal Vascular Network Assessed by OCT-Angiography in Type I Diabetes Mellitus
NCT ID: NCT03422965
Last Updated: 2020-07-29
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
600 participants
INTERVENTIONAL
2017-05-08
2021-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Correlation Between Macular Ischemia and Peripheral Ischemia in Patients With Diabetes
NCT02876744
Diabetic Retinopathy and Subclinical Signs of Disease Transition
NCT03635671
Optical Coherence Tomography Angiography and in Fluorescein Angiography in Diabetic Retinopathy
NCT05190965
OCT-Based Screening for Early Retinal Changes in Asymptomatic Diabetic Patients
NCT07232225
Vitreomacular Interface Abnormalities in Diabetic Retinopathy Using OCT
NCT03686436
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Given that all these features are commonly seen in diabetic patients, the relationship of these microvascular changes with systemic factors such as metabolic control or duration of the disease still need to be elucidated. Interestingly, further studies are required to investigate whether these changes reflect those occurring elsewhere in the body affected by diabetic microvascular disease, as the kidneys or the brain. If these relationships were demonstrated, early detection of these microvascular changes could lead to modifications in the pharmacological management of diabetic patients, as a way to reduce the risk of future complications in both the eye and other organs. The aim of this study is to evaluate the role of OCT-A in the evaluation of the perifoveal vascular network in type 1 diabetic patients, and to investigate the relationship between these OCT-A-derived parameters and demographic and clinical factors, as metabolic control and duration of the disease.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
DIAGNOSTIC
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Type 1 Diabetes Mellitus
Cohort of Type 1 DM patients
Optical Coherence Tomography Angiography
Optical Coherence Tomography Angiography images capture.
Blood test
Blood test, systemic markers
Urine test
Urine test, systemic markers
Healthy controls
Cohort of Healthy controls
Optical Coherence Tomography Angiography
Optical Coherence Tomography Angiography images capture.
Blood test
Blood test, systemic markers
Urine test
Urine test, systemic markers
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Optical Coherence Tomography Angiography
Optical Coherence Tomography Angiography images capture.
Blood test
Blood test, systemic markers
Urine test
Urine test, systemic markers
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Healthy controls
Exclusion Criteria
* Axial length: \<-6.00 to \>+3.00 diopters
* Media Opacities
* Unability to capture OCT images
18 Years
100 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Fundació La Marató de TV3
OTHER
Hospital Clinic of Barcelona
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Javier Zarranz-Ventura
MD, PhD, FEBO
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Javier Zarranz-Ventura, MD PhD FEBO
Role: PRINCIPAL_INVESTIGATOR
Hospital Clinic of Barcelona
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Institut Clinic de Oftalmologia (ICOF), Hospital Clínic de Barcelona
Barcelona, , Spain
Diabetes Unit, Institut Clinic de Malalties Digestives i Métaboliques (ICMDM), Hospital Clínic de Barcelona
Barcelona, , Spain
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Song SJ, Wong TY. Current concepts in diabetic retinopathy. Diabetes Metab J. 2014 Dec;38(6):416-25. doi: 10.4093/dmj.2014.38.6.416.
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1984 Apr;102(4):520-6. doi: 10.1001/archopht.1984.01040030398010.
Shah CA. Diabetic retinopathy: A comprehensive review. Indian J Med Sci. 2008 Dec;62(12):500-19.
Roser P, Kalscheuer H, Groener JB, Lehnhoff D, Klein R, Auffarth GU, Nawroth PP, Schuett F, Rudofsky G. Diabetic Retinopathy Screening Ratio Is Improved When Using a Digital, Nonmydriatic Fundus Camera Onsite in a Diabetes Outpatient Clinic. J Diabetes Res. 2016;2016:4101890. doi: 10.1155/2016/4101890. Epub 2016 Jan 21.
Looker HC, Nyangoma SO, Cromie DT, Olson JA, Leese GP, Philip S, Black MW, Doig J, Lee N, Briggs A, Hothersall EJ, Morris AD, Lindsay RS, McKnight JA, Pearson DW, Sattar NA, Wild SH, McKeigue P, Colhoun HM; Scottish Diabetes Research Network (SDRN) Epidemiology Group and the Scottish Diabetic Retinopathy Collaborative. Predicted impact of extending the screening interval for diabetic retinopathy: the Scottish Diabetic Retinopathy Screening programme. Diabetologia. 2013 Aug;56(8):1716-25. doi: 10.1007/s00125-013-2928-7. Epub 2013 May 21.
Zimmer-Galler IE, Kimura AE, Gupta S. Diabetic retinopathy screening and the use of telemedicine. Curr Opin Ophthalmol. 2015 May;26(3):167-72. doi: 10.1097/ICU.0000000000000142.
Gass JD. A fluorescein angiographic study of macular dysfunction secondary to retinal vascular disease. IV. Diabetic retinal angiopathy. Arch Ophthalmol. 1968 Nov;80(5):583-91. doi: 10.1001/archopht.1968.00980050585004. No abstract available.
Fioretto P, Mauer M, Brocco E, Velussi M, Frigato F, Muollo B, Sambataro M, Abaterusso C, Baggio B, Crepaldi G, Nosadini R. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996 Dec;39(12):1569-76. doi: 10.1007/s001250050616.
Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, Fine SL. Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology. 1991 Jul;98(7):1139-42. doi: 10.1016/s0161-6420(91)32165-1.
Yeung L, Lima VC, Garcia P, Landa G, Rosen RB. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema. Ophthalmology. 2009 Jun;116(6):1158-67. doi: 10.1016/j.ophtha.2008.12.063. Epub 2009 Apr 23.
Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012 Feb 13;20(4):4710-25. doi: 10.1364/OE.20.004710.
Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015 May 5;112(18):E2395-402. doi: 10.1073/pnas.1500185112. Epub 2015 Apr 20.
Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A. Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study. Am J Ophthalmol. 2015 Jul;160(1):35-44.e1. doi: 10.1016/j.ajo.2015.04.021. Epub 2015 Apr 18.
de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, Baumal CR, Crawford C, Reichel E, Witkin AJ, Duker JS, Waheed NK. DETECTION OF MICROVASCULAR CHANGES IN EYES OF PATIENTS WITH DIABETES BUT NOT CLINICAL DIABETIC RETINOPATHY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina. 2015 Nov;35(11):2364-70. doi: 10.1097/IAE.0000000000000882.
Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. ENLARGEMENT OF FOVEAL AVASCULAR ZONE IN DIABETIC EYES EVALUATED BY EN FACE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina. 2015 Nov;35(11):2377-83. doi: 10.1097/IAE.0000000000000849.
Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, Wilson DJ, Huang D, Jia Y. Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmol. 2016 Apr;134(4):367-73. doi: 10.1001/jamaophthalmol.2015.5658.
Toha-Dalmau A, Rosines-Fonoll J, Romero E, Mazzanti F, Martin-Pinardel R, Marias-Perez S, Bernal-Morales C, Castro-Dominguez R, Mendez A, Ortega E, Vinagre I, Gimenez M, Vellido A, Zarranz-Ventura J. Machine Learning Prediction of Cardiovascular Risk in Type 1 Diabetes Mellitus Using Radiomic Features from Multimodal Retinal Images. Ophthalmol Sci. 2025 Jul 4;5(6):100874. doi: 10.1016/j.xops.2025.100874. eCollection 2025 Nov-Dec.
Sala-Vila A, Vinagre I, Cofan M, Lazaro I, Ale-Chilet A, Barraso M, Hernandez T, Harris WS, Zarranz-Ventura J, Ortega E. Blood omega-3 biomarkers, diabetic retinopathy and retinal vessel status in patients with type 1 diabetes. Eye (Lond). 2025 Jun;39(8):1526-1531. doi: 10.1038/s41433-025-03705-5. Epub 2025 Feb 18.
Carrera-Escale L, Benali A, Rathert AC, Martin-Pinardel R, Bernal-Morales C, Ale-Chilet A, Barraso M, Marin-Martinez S, Feu-Basilio S, Rosines-Fonoll J, Hernandez T, Vila I, Castro-Dominguez R, Oliva C, Vinagre I, Ortega E, Gimenez M, Vellido A, Romero E, Zarranz-Ventura J. Radiomics-Based Assessment of OCT Angiography Images for Diabetic Retinopathy Diagnosis. Ophthalmol Sci. 2022 Nov 21;3(2):100259. doi: 10.1016/j.xops.2022.100259. eCollection 2023 Jun.
Bernal-Morales C, Ale-Chilet A, Martin-Pinardel R, Barraso M, Hernandez T, Oliva C, Vinagre I, Ortega E, Figueras-Roca M, Sala-Puigdollers A, Gimenez M, Esmatjes E, Adan A, Zarranz-Ventura J. Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 4: Glycated Haemoglobin. Diagnostics (Basel). 2021 Aug 25;11(9):1537. doi: 10.3390/diagnostics11091537.
Barraso M, Ale-Chilet A, Hernandez T, Oliva C, Vinagre I, Ortega E, Figueras-Roca M, Sala-Puigdollers A, Esquinas C, Esmatjes E, Adan A, Zarranz-Ventura J. Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 1: Diabetic Retinopathy. Transl Vis Sci Technol. 2020 Sep 30;9(10):34. doi: 10.1167/tvst.9.10.34. eCollection 2020 Sep.
Zarranz-Ventura J, Barraso M, Ale-Chilet A, Hernandez T, Oliva C, Gascon J, Sala-Puigdollers A, Figueras-Roca M, Vinagre I, Ortega E, Esmatjes E, Adan A. Evaluation of microvascular changes in the perifoveal vascular network using optical coherence tomography angiography (OCTA) in type I diabetes mellitus: a large scale prospective trial. BMC Med Imaging. 2019 Nov 21;19(1):91. doi: 10.1186/s12880-019-0391-8.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
OCTAMaratoTV3ICOF
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.