PediCRaFT: Pediatric Crohn's Disease Fecal Transplant Trial
NCT ID: NCT03378167
Last Updated: 2023-10-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE1
17 participants
INTERVENTIONAL
2018-12-01
2023-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Pediatric FEcal Microbiota Transplant for Ulcerative Colitis
NCT02487238
FMT in Pediatric Crohn's Disease
NCT03194529
Fecal Microbial Transplant in Pediatric Crohn's Disease
NCT02272868
Randomized Trial Comparing Single vs. Maintenance Fecal Microbiota Transplant for Refractory Crohn's Disease in Children
NCT03747718
Fecal Microbiota Transplantation in Pediatric Crohn's Disease
NCT05321745
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
A. Alterations in the IBD Microbiome Investigators have characterized specific alterations of the gut microbiota in ulcerative colitis and Crohn's disease, compared to healthy controls. Patients with active IBD may have a relative depletion in anaerobic microbes, such as Bacteroides vulgatus, Lachnospiraceae (p: Firmicutes), and an increase in Proteobacteria and Bacillus (p: Firmicutes). These microbial signatures of IBD have led to several hypotheses about the protective, and pathological roles of different resident intestinal bacterial species. Conte et al have suggested that B. vulgatus may have a protective role against colitis, downregulating inflammation. Other studies have suggested that dysbiosis in IBD leads to decreased production of key short-chain fatty acids, such as butyric acid metabolized by Faecalibacterium prausnitzii. Directly, butyric acid and other short-chain fatty acids are key substrates absorbed by colonocytes, and indirectly, butyrate may inhibit inflammatory processes in the intestinal mucosa by suppressing cytokines, like interleukin-8. These studies have attempted to define canonical "intestinal-microbial-immune axes," supporting the hypothesis that IBD may occur secondary to an altered microbiome in a genetically, immunologically susceptible host. This constant host-microbial cross-talk may thus be altered by the introduction of key bacterial species that are otherwise absent, or decreased as a consequence of active mucosal inflammation, in the IBD gut. While FMT would not provide targeted, species-specific inoculations, whole stool transplant would theoretically introduce a broad range of bacteria, including those that are theoretically "favorable" to the host.
B. The Pediatric Microbiome Pediatric IBD, and the pediatric microbiome, have several unique features that suggest microbial-based therapies could be particularly effective. Crohn's disease and ulcerative colitis typically have a much more aggressive course in the pediatric age group, suggesting that the pediatric IBD phenotype may have a pathophysiology that is distinct from adult-onset IBD. In pediatric IBD, the early age of onset makes the cumulative burden of medications, nutritional impairment, and surgery greater. Several standard IBD medication therapies have unique, age-specific toxicities in children. The overlap of pediatric chronic disease with critical periods of growth, bone accretion, and psychosocial development can make disease exacerbations disproportionately affect a child's long-term outcome. The pediatric microbiome itself has key differences. The shorter latency of disease may offer a unique window to reverse an underlying state of "dysbiosis." The pediatric microbiome may be more malleable than a fully defined adult microbiome, and the relatively immature immune system of children may be more influenced by FMT.
C. FMT for the Treatment of Pediatric IBD Four case series have been published for the treatment of pediatric ulcerative colitis (UC) and CD using FMT. Protocols varied between all studies, and three main routes of administration were used: serial enemas, serial enemas with supplementary colonoscopic administration, and nasogastric tube. The first published study, involved five enemas administered daily to 9 UC patients, ages 7-21. Outcomes included clinical improvement from baseline using Pediatric Ulcerative Colitis Activity Index (PUCAI) scores, at one-week, and one-month post-treatment. 6/9 patients maintained clinical response at their one-month follow-up assessment. In 2015, two case series of FMT for CD and UC patients were published. A single FMT infusion was administered via nasogastric tube (NGT) to 4 UC, and 9 CD patients. No clinical response was seen in UC through NGT administration. In contrast, remission was induced in 7/9 CD patients within 2-weeks post-treatment, with 5/9 maintaining remission at week 6 and week 12. The most recent pediatric case series from 2015 included a cohort of pediatric UC patients treated with oral 5-ASA monotherapy, who received a combination of serial FMT enemas and colonoscopic infusions. 3 patients were included; 100% went into clinical remission at week 2, sustained clinical remission at week 4, and had complete withdrawal of immunotherapy at time of publication. Within the limitations of this small case series, there was a correlation between the number of FMT administrations, and the duration of remission.
Two single-center pediatric case reports have recently been published showing marked clinical improvement in two patients with severe colitis. A 2015 case report describes a 4-month old female presenting with an early-onset colitis with UC-like phenotype. The patient was refractory to treatment with azathioprine and corticosteroids, and did not respond to further treatment with probiotics, a trial of amino-acid based formula, or infliximab. 2 serial FMT infusions with anonymous donor stool were administered via colonoscope, and a subsequent 5 infusions via nasoduodenal tube. These interventions led to clinical improvement, and complete resolution of histopathologic changes 6-months post FMT. A recent, 2016 case report describes an 11-year old female with corticosteroid-dependent UC who was unresponsive to treatment with 5-aminosalicylic acid and tacrolimus14. An initial FMT using her father's donor stool was performed via colonoscopy, and subsequent daily FMTs via fecal retention enema over the next 4 days, followed by 11 additional FMTs via retention enema every 2 to 4 weeks over 10 months. The patient remained in clinical remission at 40 weeks post final FMT, and showed complete endoscopic healing.
D. Clinical Observations from Published Pediatric IBD FMT Studies Despite promising results, major drawbacks to these four pediatric studies include small sample sizes and their open label study design. Studies of clinical response demand a blinded study protocol, particularly given that many patients who enrol in FMT studies are a self-selected group, who already believe in the therapeutic value of "natural" treatments. Further, inflammatory bowel disease has well-described associations between clinical symptoms, mucosal disease activity and underlying stressors; thus, patient bias may have a significant influence on self-reported PUCAI/PCDAI (Pediatric Crohn's Disease Activity Index) scores when measuring clinical response. In addition, it is also important to note that success of FMT for IBD reflected in the aforementioned studies may reflect a propensity for studies with positive results to be published and unreported, unsuccessful studies may exist.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
Patients randomized to the control group will be given the option of receiving open-label treatment, with the intervention therapy, either: upon completion of the trial, or if they are removed from the trial due to disease exacerbation or other adverse event, at the discretion of their primary gastroenterologist.
TREATMENT
TRIPLE
1. Microbial enemas are drawn up in a 500cc syringe that is concealed with an opaque bag, used to infuse contents through the colonoscope. This will insure contents are blinded to non-study personnel in the room
2. Patients randomized to the control study arm will have identical concealment of the 500cc syringe used to infuse contents through the colonoscope. For the NS infusion, study personnel will add an additional 0.75 ml of commercially available (Club House® brand), food-grade food coloring (2 drops red, 3 drops green, 7 drops yellow) to confer a brown color to the clear normal saline solution. This step will maintain blinding for the patient and non-study personnel in the room, as the contents of the liquid will be visible endoscopically, but will still retain a similarly-colored brown appearance akin to human stool.
ORAL CAPSULAR THERAPY:
a), b) The opaque color of both the OMC and OPC will insure that blinding is preserved to the study patient.
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
MICROBIOTA
Patients randomized to the INTERVENTION arm will receive a baseline fecal microbiota transplant (FMT) colonoscopic infusion at Week 0, followed by twice-weekly oral microbiota capsule (OMC) therapy for 6 weeks (including Week 0). (n = 30)
MICROBIOTA
Fecal microbiota enema (RBX2660) infused via colonoscope x 1 + oral microbiota capsules (RBX7455) x 6 weeks. The fecal microbiota enema (RBX2660) prepared by Rebiotix has received Health Canada Clinical Trials Application (CTA), and U.S. Food and Drug Administration Investigational New Drug Application (IND) approval for clinical trials in patients with recurrent Clostridium difficile infection, and pediatric inflammatory bowel disease. The human-derived fecal oral microbiota capsule (RBX7455) has received U.S. Food and Drug Administration Investigational New Drug Application (IND) approval for clinical trials in patients with recurrent Clostridium difficile infection.
PLACEBO
Patients randomized to the CONTROL arm will receive a baseline normal saline (NS) colonoscopic infusion at Week 0, followed by twice-weekly dextrose-containing oral placebo capsule (OPC) therapy for 6 weeks (including Week 0). (n = 15)
PLACEBO
Placebo enema (Normal Saline) infused via colonoscope x 1 + oral placebo capsules (dextrose-containing capsules) x 6 weeks.
NOTE: Patients randomized to the control group will be given the option of receiving open-label treatment, with the intervention therapy, either: upon completion of the trial, or if they are removed from the trial due to disease exacerbation or other adverse event, at the discretion of their primary gastroenterologist.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
MICROBIOTA
Fecal microbiota enema (RBX2660) infused via colonoscope x 1 + oral microbiota capsules (RBX7455) x 6 weeks. The fecal microbiota enema (RBX2660) prepared by Rebiotix has received Health Canada Clinical Trials Application (CTA), and U.S. Food and Drug Administration Investigational New Drug Application (IND) approval for clinical trials in patients with recurrent Clostridium difficile infection, and pediatric inflammatory bowel disease. The human-derived fecal oral microbiota capsule (RBX7455) has received U.S. Food and Drug Administration Investigational New Drug Application (IND) approval for clinical trials in patients with recurrent Clostridium difficile infection.
PLACEBO
Placebo enema (Normal Saline) infused via colonoscope x 1 + oral placebo capsules (dextrose-containing capsules) x 6 weeks.
NOTE: Patients randomized to the control group will be given the option of receiving open-label treatment, with the intervention therapy, either: upon completion of the trial, or if they are removed from the trial due to disease exacerbation or other adverse event, at the discretion of their primary gastroenterologist.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* ≥3yo
* Crohn's disease, or IBD-Unclassified favoring Crohn's disease (as deemed by the patient's primary pediatric gastroenterologist)
* Active symptoms
Exclusion Criteria
* Unable to give informed consent or assent
* Severe comorbid medical illness (at discretion of patient's primary pediatric gastroenterologist)
* Concomitant Clostridium difficile infection
* Severe Crohn's disease flare requiring hospitalization
* Commenced new, or temporary medical therapies (ie. corticosteroids, antibiotics, prebiotics) within 4 weeks prior to commencing the trial; NB: Weaning doses of corticosteroid will be permitted (≤ 0.25mg/kg/day)
3 Years
17 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
St. Justine's Hospital
OTHER
McMaster Children's Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Nikhil Pai
Associate Professor, Division of Pediatric Gastroenterology & Nutrition
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Nikhil Pai, BSc, CNSC, MD, FRCPC
Role: PRINCIPAL_INVESTIGATOR
McMaster Children's Hospital, Division of Pediatric Gastroenterology & Nutrition
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
McMaster Children's Hospital
Hamilton, Ontario, Canada
Centre Hospitalier Universitaire Sainte-Justine, University of Montreal
Montreal, Quebec, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Haberman Y, Tickle TL, Dexheimer PJ, Kim MO, Tang D, Karns R, Baldassano RN, Noe JD, Rosh J, Markowitz J, Heyman MB, Griffiths AM, Crandall WV, Mack DR, Baker SS, Huttenhower C, Keljo DJ, Hyams JS, Kugathasan S, Walters TD, Aronow B, Xavier RJ, Gevers D, Denson LA. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest. 2014 Aug;124(8):3617-33. doi: 10.1172/JCI75436. Epub 2014 Jul 8.
Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC, Kostic AD, Luo C, Gonzalez A, McDonald D, Haberman Y, Walters T, Baker S, Rosh J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier RJ. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014 Mar 12;15(3):382-392. doi: 10.1016/j.chom.2014.02.005.
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009 Oct 29;461(7268):1282-6. doi: 10.1038/nature08530.
Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F, Seganti L, Osborn J, Falconieri P, Borrelli O, Cucchiara S. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut. 2006 Dec;55(12):1760-7. doi: 10.1136/gut.2005.078824. Epub 2006 Apr 28.
Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007 May 28;13(20):2826-32. doi: 10.3748/wjg.v13.i20.2826.
Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014 Aug;63(8):1275-83. doi: 10.1136/gutjnl-2013-304833. Epub 2013 Sep 10.
Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010 Jul;90(3):859-904. doi: 10.1152/physrev.00045.2009.
Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res. 2014 Jul;76(1):2-10. doi: 10.1038/pr.2014.49. Epub 2014 Apr 14.
Kunde S, Pham A, Bonczyk S, Crumb T, Duba M, Conrad H Jr, Cloney D, Kugathasan S. Safety, tolerability, and clinical response after fecal transplantation in children and young adults with ulcerative colitis. J Pediatr Gastroenterol Nutr. 2013 Jun;56(6):597-601. doi: 10.1097/MPG.0b013e318292fa0d.
Kellermayer R, Nagy-Szakal D, Harris RA, Luna RA, Pitashny M, Schady D, Mir SA, Lopez ME, Gilger MA, Belmont J, Hollister EB, Versalovic J. Serial fecal microbiota transplantation alters mucosal gene expression in pediatric ulcerative colitis. Am J Gastroenterol. 2015 Apr;110(4):604-6. doi: 10.1038/ajg.2015.19. No abstract available.
Suskind DL, Brittnacher MJ, Wahbeh G, Shaffer ML, Hayden HS, Qin X, Singh N, Damman CJ, Hager KR, Nielson H, Miller SI. Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn's disease. Inflamm Bowel Dis. 2015 Mar;21(3):556-63. doi: 10.1097/MIB.0000000000000307.
Vandenplas Y, Veereman G, van der Werff Ten Bosch J, Goossens A, Pierard D, Samsom JN, Escher JC. Fecal Microbial Transplantation in Early-Onset Colitis: Caution Advised. J Pediatr Gastroenterol Nutr. 2015 Sep;61(3):e12-4. doi: 10.1097/MPG.0000000000000281. No abstract available.
Suskind DL, Singh N, Nielson H, Wahbeh G. Fecal microbial transplant via nasogastric tube for active pediatric ulcerative colitis. J Pediatr Gastroenterol Nutr. 2015 Jan;60(1):27-9. doi: 10.1097/MPG.0000000000000544.
Shimizu H, Arai K, Abe J, Nakabayashi K, Yoshioka T, Hosoi K, Kuroda M. Repeated fecal microbiota transplantation in a child with ulcerative colitis. Pediatr Int. 2016 Aug;58(8):781-5. doi: 10.1111/ped.12967. Epub 2016 Jun 21.
Turner D, Otley AR, Mack D, Hyams J, de Bruijne J, Uusoue K, Walters TD, Zachos M, Mamula P, Beaton DE, Steinhart AH, Griffiths AM. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: a prospective multicenter study. Gastroenterology. 2007 Aug;133(2):423-32. doi: 10.1053/j.gastro.2007.05.029. Epub 2007 May 21.
Hyams JS, Ferry GD, Mandel FS, Gryboski JD, Kibort PM, Kirschner BS, Griffiths AM, Katz AJ, Grand RJ, Boyle JT, et al. Development and validation of a pediatric Crohn's disease activity index. J Pediatr Gastroenterol Nutr. 1991 May;12(4):439-47.
Pai N, Popov J. Protocol for a randomised, placebo-controlled pilot study for assessing feasibility and efficacy of faecal microbiota transplantation in a paediatric ulcerative colitis population: PediFETCh trial. BMJ Open. 2017 Aug 21;7(8):e016698. doi: 10.1136/bmjopen-2017-016698.
Orenstein R, Dubberke E, Hardi R, Ray A, Mullane K, Pardi DS, Ramesh MS; PUNCH CD Investigators. Safety and Durability of RBX2660 (Microbiota Suspension) for Recurrent Clostridium difficile Infection: Results of the PUNCH CD Study. Clin Infect Dis. 2016 Mar 1;62(5):596-602. doi: 10.1093/cid/civ938. Epub 2015 Nov 12.
Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, Aroniadis O, Barto A, Borody T, Giovanelli A, Gordon S, Gluck M, Hohmann EL, Kao D, Kao JY, McQuillen DP, Mellow M, Rank KM, Rao K, Ray A, Schwartz MA, Singh N, Stollman N, Suskind DL, Vindigni SM, Youngster I, Brandt L. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014 Jul;109(7):1065-71. doi: 10.1038/ajg.2014.133. Epub 2014 Jun 3.
Lobaton T, Bessissow T, De Hertogh G, Lemmens B, Maedler C, Van Assche G, Vermeire S, Bisschops R, Rutgeerts P, Bitton A, Afif W, Marcus V, Ferrante M. The Modified Mayo Endoscopic Score (MMES): A New Index for the Assessment of Extension and Severity of Endoscopic Activity in Ulcerative Colitis Patients. J Crohns Colitis. 2015 Oct;9(10):846-52. doi: 10.1093/ecco-jcc/jjv111. Epub 2015 Jun 26.
Cammarota G, Ianiro G, Tilg H, Rajilic-Stojanovic M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, Segal J, Aloi M, Masucci L, Molinaro A, Scaldaferri F, Gasbarrini G, Lopez-Sanroman A, Link A, de Groot P, de Vos WM, Hogenauer C, Malfertheiner P, Mattila E, Milosavljevic T, Nieuwdorp M, Sanguinetti M, Simren M, Gasbarrini A; European FMT Working Group. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017 Apr;66(4):569-580. doi: 10.1136/gutjnl-2016-313017. Epub 2017 Jan 13.
Agrawal M, Aroniadis OC, Brandt LJ, Kelly C, Freeman S, Surawicz C, Broussard E, Stollman N, Giovanelli A, Smith B, Yen E, Trivedi A, Hubble L, Kao D, Borody T, Finlayson S, Ray A, Smith R. The Long-term Efficacy and Safety of Fecal Microbiota Transplant for Recurrent, Severe, and Complicated Clostridium difficile Infection in 146 Elderly Individuals. J Clin Gastroenterol. 2016 May-Jun;50(5):403-7. doi: 10.1097/MCG.0000000000000410.
General Assembly of the World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent. 2014 Summer;81(3):14-8.
Pai N, Popov J, Hill L, Hartung E. Protocol for a double-blind, randomised, placebo-controlled pilot study for assessing the feasibility and efficacy of faecal microbiota transplant in a paediatric Crohn's disease population: PediCRaFT Trial. BMJ Open. 2019 Nov 28;9(11):e030120. doi: 10.1136/bmjopen-2019-030120.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
0000
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.