Supporting and Enhancing NICU Sensory Experiences (SENSE)

NCT ID: NCT03316547

Last Updated: 2021-07-07

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

70 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-08-16

Study Completion Date

2019-11-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Seventy preterm infants born less than or equal to 32 weeks gestation were put into either the sensory-based intervention (experiment) group or traditional care (control) group. Consecutive admissions at St. Louis Children's Hospital (SLCH) who were hospitalized in a private NICU room were recruited. The parents of infants in the sensory-based intervention group were educated and supported by trained therapists to give different positive sensory experiences to their infants while hospitalized. The traditional care group received normal, standard care while hospitalized. For both care groups, infant neurobehavior, sensory processing, and parent mental health were measured at term age prior to hospital discharge. Child development, sensory processing, and parent mental health were measured again at age one year (corrected). Differences between the two groups were explored.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Approximately 12%, or 500,000 infants, are born preterm each year in the United States alone. Although survival rates of preterm infants have increased with advances in medical care, the risk of developmental delay and disability has remained constant. Very preterm infants (\<32 weeks gestation) necessitate care in the neonatal intensive care unit (NICU) for an average of three months after birth, which is a significant period of time coinciding with a critical window of brain development. While medical factors, such as brain injury, can heighten the risk of adverse neurodevelopmental outcome, the NICU environment may also have deleterious effects on early brain structure and function.

The Influence of Early Environment: Maternal deprivation and isolation from positive sensory experiences are prominent features of orphan studies. Consequences of language and human deprivation include emotional disturbances, delayed cognitive and language skills, and abnormalities evident on magnetic resonance imaging (MRI). Although the preterm infant differs from a child who has been institutionalized or deprived of caregiving attention after full term birth, there are similarities, such as the altered temporal lobe structures, and the pattern of developmental impairments. There is growing evidence supporting the importance of parents in the NICU. Low frequency visits between parents and their hospitalized preterm infants have been associated with suboptimal outcomes, like child abuse and abandonment and adverse emotional functioning. NICU's in Sweden have been successful with engaging parents in care from admission to discharge and have reported shorter hospitalizations. There is also a growing body of evidence supporting positive sensory exposures for preterm infants, including maternal voice recordings, massage, skin-to-skin holding, and vestibular and kinesthetic interventions. In addition, my team has made important research findings pointing to the potential need for developmentally-appropriate sensory exposures in the NICU.

Outcomes Associated with Preterm Birth: While advances in medical technologies have improved the rates of survival among preterm infants, the risk of long-term morbidities remains high, with 50-70% of very preterm infants exhibiting developmental problems. In addition to motor problems, language and communication problems are common in former preterm infants when studied at school age, and recent evidence suggests that language deficits persist through childhood. Language difficulties have also been shown to affect a broad range of factors important for social prowess and academic achievement. In addition, preterm infants have a heightened risk of attachment disorders and other social-emotional problems.

Outcomes Associated with Parenting a Preterm Infant: Many negative psychological sequelae are associated with parenting a preterm infant, including depression, anxiety, and post-traumatic stress. Such negative parental mental health outcomes proceed to influence the parent-child relationship, leading to a parent's inability to recognize infant cues as well as increased negativity and intrusiveness. Negative maternal-child interactions continue into the first several months of life if stress remains high. Forming such a foundation may then lead to negative child outcomes associated with social-emotional development, including attachment insecurity, and mental health issues.

Sensory Stimuli and Current Practice in the NICU: High-risk infants who receive care in the NICU are exposed to significant stressors that include painful procedures, disruption of normal sensory experiences, and stress related to parent-infant separation. In addition to the loss of parental nurturing, there is growing concern that stress during a period of extensive brain development may result in permanent and deleterious developmental outcomes.

Developmental care, which includes sensory minimization, has been the predominant model of care in the NICU since the 1980s, because the bright and noisy environment, which exceeds sensory standards set by the American Academy of Pediatrics, is understood to adversely affect growth and development of the preterm infant. In support of developmental care principles, NICU staff makes efforts to reduce modifiable stimuli to the high-risk infant in the NICU. However, there is emerging research on the positive effects of sensory stimulation for preterm infants in the NICU.

Positive sensory exposures in the NICU are critical, as they can have life-long implications on learning, memory, emotions, and developmental progression. In an environment where stimuli are primarily negative, it is especially important to define and implement positive sensory exposures in the NICU. Further, it is well understood that multi-dimensional sensory exposures are present in utero in the final months and weeks of pregnancy, but the preterm infant misses potentially important, timed exposures that may be absent or altered in the NICU environment. Positive forms of sensory exposure during periods of infant readiness may be important to facilitate appropriate neural pathways and enable positive experiences.

Results from a rigorous systematic review, benchmarking, and expert opinion were used to develop a clinical practice guideline for sensory-based interventions for hospitalized, very preterm infants using the Appraisal of Guidelines for Research and Evaluation II instrument. The manualized intervention (from the integrative review and development of the implementation plan) includes evidenced-based interventions that can be conducted by parents with their preterm infants across postmenstrual age while hospitalized. The sensory-based intervention includes the provision of specific amounts of auditory, tactile, vestibular, kinesthetic, olfactory, and visual exposure to be conducted daily through hospitalization. The intervention plan is intended to be implemented by parents (when available) and by surrogates when the parents are unable to be present in the hospital. Surveys, focus groups of a multidisciplinary team of health care professionals and parents of preterm infants in the NICU, and a pilot/feasibility study were conducted to assess acceptability, appropriateness and feasibility of the sensory-based intervention plan. The investigators enrolled 30 very preterm infants within the first week of life and implemented the sensory-based program. Logging sheets were placed at the infant's bedside to document the execution of sensory-based interventions, who conducted the intervention (parent, member of research team or other caregiver), and infant responses and consequences of the intervention. Physiological (such as heart rate and oxygen saturation fluctuations), state (levels of arousal) and behavioral (such as crying, changes in motoric tone) responses were recorded by caregivers during interventions on the bedside logs. Negative sequelae of the intervention resulted in stopping the intervention and modifying the criteria for sensory-based interventions accordingly. A licensed therapist provided guidance as to when infants can and cannot tolerate sensory exposures. From clinical documentation and bedside logging, implementation factors were assessed. Adaptations to the sensory-based program were made until it was deemed appropriate by the investigative team. This occurred after the model for an enhanced sensory environment could be documented 75% of the time on at least 3 consecutive participants.

The aim of this randomized clinical trial was to assess the effect of a sensory-based intervention in the NICU on outcomes of preterm infants and their families.

After obtaining informed consent, 70 preterm infants were randomized to 2 levels of sensory exposure: the sensory-based intervention or traditional care group. The parents of infants in the sensory-based intervention group were educated and supported to conduct sensory interventions with their infants using the systematized protocol. The traditional care group had therapists and nurses provide and educate parents about sensory exposures as standard of care. For both care groups, infant neurobehavior, sensory processing, mother-infant interaction, and parent mental health were assessed at term age prior to hospital discharge. Child development, sensory processing, and parent mental health were measured again at age one year corrected using standardized measures. Differences between groups were explored.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Premature Birth of Newborn

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

SENSE program-treatment; standard-of-care-control
Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Caregivers Outcome Assessors
Parents were asked to participate in a study investigating 2 different approaches to sensory exposures in the NICU. The approach (SENSE or standard of care) were described after enrollment, based on which group they were randomized to. The evaluator was blinded to treatment assignment.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Control

The control group received standard hospital care.

Group Type NO_INTERVENTION

No interventions assigned to this group

Intervention

Parents in the sensory-based intervention group were educated to provide daily sensory-based interventions across the length of hospitalization as outlined in the manualized intervention (the SENSE Program). A sensory support team completed the doses of sensory exposures when parents were unable.

Group Type EXPERIMENTAL

SENSE Program

Intervention Type OTHER

Specific amounts of auditory, tactile, vestibular, kinesthetic, and visual exposure conducted daily through hospitalization. This includes specifically timed and set amounts of reading/talking/singing, cycled lighting, skin-to-skin (kangaroo) care or gentle human touch, rocking, and therapeutic exercises \[passive range of motion (PROM), gentle stretching\]. The intervention plan is intended to be implemented by parents when available, and by surrogates when the parents are unable to be present in the hospital. Specific amounts and timing of interventions will be tailored to the current medical status and age of each infant.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

SENSE Program

Specific amounts of auditory, tactile, vestibular, kinesthetic, and visual exposure conducted daily through hospitalization. This includes specifically timed and set amounts of reading/talking/singing, cycled lighting, skin-to-skin (kangaroo) care or gentle human touch, rocking, and therapeutic exercises \[passive range of motion (PROM), gentle stretching\]. The intervention plan is intended to be implemented by parents when available, and by surrogates when the parents are unable to be present in the hospital. Specific amounts and timing of interventions will be tailored to the current medical status and age of each infant.

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Sensory-Based Intervention

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

Preterm Infants:

* A prospective cohort very preterm infants (VPT) born less than or equal to 32 weeks gestation at the St. Louis Children's Hospital in St. Louis, Missouri.
* Infant is less than or equal to 7 days old when approached about the study.

Parents:

-Parents (including emancipated minors age 12-17) of very preterm infants (VPT) born less than or equal to 32 weeks gestation at the St. Louis Children's Hospital in St. Louis, Missouri.

Exclusion Criteria

Preterm Infants:

* Known or suspected congenital anomaly, congenital infection (e.g., syphilis, HIV, TORCH), or known prenatal brain lesions (e.g., cysts or infarctions)
* Infants that are wards of the state, or become wards of the state after enrolling in the study. Any data collected beginning at the time the state obtains custody onward will not be used in the research study.
* Infants who are in the open ward area/bed spaces of the SLCH NICU (due to the significant variation in sensory exposure among those infants, and also to provide consistency during the hospital's impending transition to strictly private rooms in the very near future).

Parents:

-Parents with limited or no understanding of the English Language
Maximum Eligible Age

32 Weeks

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Southern California

OTHER

Sponsor Role collaborator

Washington University School of Medicine

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Roberta G Pineda, PhD, OTR/L

Role: PRINCIPAL_INVESTIGATOR

Washington University School of Medicine; University of Southern California

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

St. Louis Children's Hospital

St Louis, Missouri, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Woodward LJ, Bora S, Clark CA, Montgomery-Honger A, Pritchard VE, Spencer C, Austin NC. Very preterm birth: maternal experiences of the neonatal intensive care environment. J Perinatol. 2014 Jul;34(7):555-61. doi: 10.1038/jp.2014.43. Epub 2014 Mar 20.

Reference Type BACKGROUND
PMID: 24651730 (View on PubMed)

Gray RF, Indurkhya A, McCormick MC. Prevalence, stability, and predictors of clinically significant behavior problems in low birth weight children at 3, 5, and 8 years of age. Pediatrics. 2004 Sep;114(3):736-43. doi: 10.1542/peds.2003-1150-L.

Reference Type BACKGROUND
PMID: 15342847 (View on PubMed)

Nomura Y, Wickramaratne PJ, Warner V, Mufson L, Weissman MM. Family discord, parental depression, and psychopathology in offspring: ten-year follow-up. J Am Acad Child Adolesc Psychiatry. 2002 Apr;41(4):402-9. doi: 10.1097/00004583-200204000-00012.

Reference Type BACKGROUND
PMID: 11931596 (View on PubMed)

Smith GC, Gutovich J, Smyser C, Pineda R, Newnham C, Tjoeng TH, Vavasseur C, Wallendorf M, Neil J, Inder T. Neonatal intensive care unit stress is associated with brain development in preterm infants. Ann Neurol. 2011 Oct;70(4):541-9. doi: 10.1002/ana.22545. Epub 2011 Oct 4.

Reference Type BACKGROUND
PMID: 21976396 (View on PubMed)

Douret, L., M. Robin, and M. Le Normandy, The history of care of premature infants: from neonate intensive care to special care baby unit. Early Child Dev Care, 1994. 182: p. 21-29.

Reference Type BACKGROUND

Noise: a hazard for the fetus and newborn. American Academy of Pediatrics. Committee on Environmental Health. Pediatrics. 1997 Oct;100(4):724-7. No abstract available.

Reference Type BACKGROUND
PMID: 9836852 (View on PubMed)

Brandon DH, Holditch-Davis D, Belyea M. Preterm infants born at less than 31 weeks' gestation have improved growth in cycled light compared with continuous near darkness. J Pediatr. 2002 Feb;140(2):192-9. doi: 10.1067/mpd.2002.121932.

Reference Type BACKGROUND
PMID: 11865270 (View on PubMed)

Field T. Alleviating stress in newborn infants in the intensive care unit. Clin Perinatol. 1990 Mar;17(1):1-9.

Reference Type BACKGROUND
PMID: 2180616 (View on PubMed)

Graven SN, Bowen FW Jr, Brooten D, Eaton A, Graven MN, Hack M, Hall LA, Hansen N, Hurt H, Kavalhuna R, et al. The high-risk infant environment. Part 1. The role of the neonatal intensive care unit in the outcome of high-risk infants. J Perinatol. 1992 Jun;12(2):164-72. No abstract available.

Reference Type BACKGROUND
PMID: 1522437 (View on PubMed)

Byers JF. Components of developmental care and the evidence for their use in the NICU. MCN Am J Matern Child Nurs. 2003 May-Jun;28(3):174-80; quiz 181-2. doi: 10.1097/00005721-200305000-00007.

Reference Type BACKGROUND
PMID: 12771696 (View on PubMed)

Lasky RE, Williams AL. Noise and light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit. Pediatrics. 2009 Feb;123(2):540-6. doi: 10.1542/peds.2007-3418.

Reference Type BACKGROUND
PMID: 19171620 (View on PubMed)

Volpe, J., Neurology of the Newborn 2008, Saunders: Philadelphia.

Reference Type BACKGROUND

Seay B, Harlow HF. Maternal separation in the rhesus monkey. J Nerv Ment Dis. 1965 Jun;140(6):434-41. doi: 10.1097/00005053-196506000-00006. No abstract available.

Reference Type BACKGROUND
PMID: 4953280 (View on PubMed)

Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T, Millner A, Galvan A, Davidson MC, Eigsti IM, Thomas KM, Freed PJ, Booma ES, Gunnar MR, Altemus M, Aronson J, Casey BJ. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci. 2010 Jan 1;13(1):46-61. doi: 10.1111/j.1467-7687.2009.00852.x.

Reference Type BACKGROUND
PMID: 20121862 (View on PubMed)

Tottenham N, Sheridan MA. A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front Hum Neurosci. 2010 Jan 8;3:68. doi: 10.3389/neuro.09.068.2009. eCollection 2009.

Reference Type BACKGROUND
PMID: 20161700 (View on PubMed)

BRODBECK AJ, IRWIN OC. The speech behaviour of infants without families. Child Dev. 1946 Sep;17(3):145-56. No abstract available.

Reference Type BACKGROUND
PMID: 20285787 (View on PubMed)

Govindan RM, Behen ME, Helder E, Makki MI, Chugani HT. Altered water diffusivity in cortical association tracts in children with early deprivation identified with Tract-Based Spatial Statistics (TBSS). Cereb Cortex. 2010 Mar;20(3):561-9. doi: 10.1093/cercor/bhp122. Epub 2009 Jun 22.

Reference Type BACKGROUND
PMID: 19546156 (View on PubMed)

Aeby A, Van Bogaert P, David P, Baleriaux D, Vermeylen D, Metens T, De Tiege X. Nonlinear microstructural changes in the right superior temporal sulcus and lateral occipitotemporal gyrus between 35 and 43 weeks in the preterm brain. Neuroimage. 2012 Oct 15;63(1):104-10. doi: 10.1016/j.neuroimage.2012.06.013. Epub 2012 Jun 17.

Reference Type BACKGROUND
PMID: 22713672 (View on PubMed)

Barre N, Morgan A, Doyle LW, Anderson PJ. Language abilities in children who were very preterm and/or very low birth weight: a meta-analysis. J Pediatr. 2011 May;158(5):766-774.e1. doi: 10.1016/j.jpeds.2010.10.032. Epub 2010 Dec 10.

Reference Type BACKGROUND
PMID: 21146182 (View on PubMed)

Reynolds LC, Duncan MM, Smith GC, Mathur A, Neil J, Inder T, Pineda RG. Parental presence and holding in the neonatal intensive care unit and associations with early neurobehavior. J Perinatol. 2013 Aug;33(8):636-41. doi: 10.1038/jp.2013.4. Epub 2013 Feb 14.

Reference Type BACKGROUND
PMID: 23412640 (View on PubMed)

Fanaroff AA, Kennell JH, Klaus MH. Follow-up of low birth weight infants--the predictive value of maternal visiting patterns. Pediatrics. 1972 Feb;49(2):287-90. No abstract available.

Reference Type BACKGROUND
PMID: 5059535 (View on PubMed)

Latva R, Lehtonen L, Salmelin RK, Tamminen T. Visiting less than every day: a marker for later behavioral problems in Finnish preterm infants. Arch Pediatr Adolesc Med. 2004 Dec;158(12):1153-7. doi: 10.1001/archpedi.158.12.1153.

Reference Type BACKGROUND
PMID: 15583100 (View on PubMed)

Ortenstrand A, Westrup B, Brostrom EB, Sarman I, Akerstrom S, Brune T, Lindberg L, Waldenstrom U. The Stockholm Neonatal Family Centered Care Study: effects on length of stay and infant morbidity. Pediatrics. 2010 Feb;125(2):e278-85. doi: 10.1542/peds.2009-1511. Epub 2010 Jan 25.

Reference Type BACKGROUND
PMID: 20100748 (View on PubMed)

Krueger C, Parker L, Chiu SH, Theriaque D. Maternal voice and short-term outcomes in preterm infants. Dev Psychobiol. 2010 Mar;52(2):205-12. doi: 10.1002/dev.20426.

Reference Type BACKGROUND
PMID: 20112262 (View on PubMed)

Diego MA, Field T, Hernandez-Reif M. Preterm infant weight gain is increased by massage therapy and exercise via different underlying mechanisms. Early Hum Dev. 2014 Mar;90(3):137-40. doi: 10.1016/j.earlhumdev.2014.01.009. Epub 2014 Jan 27.

Reference Type BACKGROUND
PMID: 24480603 (View on PubMed)

Hernandez-Reif M, Diego M, Field T. Preterm infants show reduced stress behaviors and activity after 5 days of massage therapy. Infant Behav Dev. 2007 Dec;30(4):557-61. doi: 10.1016/j.infbeh.2007.04.002. Epub 2007 Jun 4.

Reference Type BACKGROUND
PMID: 17548111 (View on PubMed)

Mendes EW, Procianoy RS. Massage therapy reduces hospital stay and occurrence of late-onset sepsis in very preterm neonates. J Perinatol. 2008 Dec;28(12):815-20. doi: 10.1038/jp.2008.108. Epub 2008 Jul 17.

Reference Type BACKGROUND
PMID: 18633421 (View on PubMed)

Feldman R, Rosenthal Z, Eidelman AI. Maternal-preterm skin-to-skin contact enhances child physiologic organization and cognitive control across the first 10 years of life. Biol Psychiatry. 2014 Jan 1;75(1):56-64. doi: 10.1016/j.biopsych.2013.08.012. Epub 2013 Oct 4.

Reference Type BACKGROUND
PMID: 24094511 (View on PubMed)

Scher MS, Ludington-Hoe S, Kaffashi F, Johnson MW, Holditch-Davis D, Loparo KA. Neurophysiologic assessment of brain maturation after an 8-week trial of skin-to-skin contact on preterm infants. Clin Neurophysiol. 2009 Oct;120(10):1812-8. doi: 10.1016/j.clinph.2009.08.004. Epub 2009 Sep 17.

Reference Type BACKGROUND
PMID: 19766056 (View on PubMed)

White-Traut RC, Nelson MN, Silvestri JM, Vasan U, Littau S, Meleedy-Rey P, Gu G, Patel M. Effect of auditory, tactile, visual, and vestibular intervention on length of stay, alertness, and feeding progression in preterm infants. Dev Med Child Neurol. 2002 Feb;44(2):91-7. doi: 10.1017/s0012162201001736.

Reference Type BACKGROUND
PMID: 11848115 (View on PubMed)

Vignochi CM, Silveira RC, Miura E, Canani LH, Procianoy RS. Physical therapy reduces bone resorption and increases bone formation in preterm infants. Am J Perinatol. 2012 Sep;29(8):573-8. doi: 10.1055/s-0032-1310520. Epub 2012 Jul 6.

Reference Type BACKGROUND
PMID: 22773291 (View on PubMed)

Maguire CM, Walther FJ, van Zwieten PH, Le Cessie S, Wit JM, Veen S. Follow-up outcomes at 1 and 2 years of infants born less than 32 weeks after Newborn Individualized Developmental Care and Assessment Program. Pediatrics. 2009 Apr;123(4):1081-7. doi: 10.1542/peds.2008-1950.

Reference Type BACKGROUND
PMID: 19336365 (View on PubMed)

Reproductive Health, Preterm Birth. March 23, 2012; Available from: http://www.cdc.gov/reproductivehealth/maternalinfanthealth/PretermBirth.htm.

Reference Type BACKGROUND

Williams J, Lee KJ, Anderson PJ. Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: a systematic review. Dev Med Child Neurol. 2010 Mar;52(3):232-7. doi: 10.1111/j.1469-8749.2009.03544.x. Epub 2010 Feb 4.

Reference Type BACKGROUND
PMID: 20002114 (View on PubMed)

Botting, N., Z. Simkin, and G. Conti-Ramsden, Associated reading skills in children with a history of Specific Language Impairment (SLI). Read Writ, 2006. 19: p. 77-98.

Reference Type BACKGROUND

Durkin K, Conti-Ramsden G. Language, social behavior, and the quality of friendships in adolescents with and without a history of specific language impairment. Child Dev. 2007 Sep-Oct;78(5):1441-57. doi: 10.1111/j.1467-8624.2007.01076.x.

Reference Type BACKGROUND
PMID: 17883441 (View on PubMed)

Mulder H, Pitchford NJ, Hagger MS, Marlow N. Development of executive function and attention in preterm children: a systematic review. Dev Neuropsychol. 2009;34(4):393-421. doi: 10.1080/87565640902964524.

Reference Type BACKGROUND
PMID: 20183707 (View on PubMed)

Pedespan L. [Attachment and prematurity]. Gynecol Obstet Fertil. 2004 Sep;32(9):716-20. doi: 10.1016/j.gyobfe.2004.06.016. French.

Reference Type BACKGROUND
PMID: 15380751 (View on PubMed)

Quesada AA, Tristao RM, Pratesi R, Wolf OT. Hyper-responsiveness to acute stress, emotional problems and poorer memory in former preterm children. Stress. 2014 Sep;17(5):389-99. doi: 10.3109/10253890.2014.949667.

Reference Type BACKGROUND
PMID: 25089937 (View on PubMed)

Miles MS, Holditch-Davis D, Schwartz TA, Scher M. Depressive symptoms in mothers of prematurely born infants. J Dev Behav Pediatr. 2007 Feb;28(1):36-44. doi: 10.1097/01.DBP.0000257517.52459.7a.

Reference Type BACKGROUND
PMID: 17353730 (View on PubMed)

Zelkowitz P, Na S, Wang T, Bardin C, Papageorgiou A. Early maternal anxiety predicts cognitive and behavioural outcomes of VLBW children at 24 months corrected age. Acta Paediatr. 2011 May;100(5):700-4. doi: 10.1111/j.1651-2227.2010.02128.x. Epub 2011 Jan 11.

Reference Type BACKGROUND
PMID: 21214883 (View on PubMed)

Holditch-Davis D, Bartlett TR, Blickman AL, Miles MS. Posttraumatic stress symptoms in mothers of premature infants. J Obstet Gynecol Neonatal Nurs. 2003 Mar-Apr;32(2):161-71. doi: 10.1177/0884217503252035.

Reference Type BACKGROUND
PMID: 12685667 (View on PubMed)

O'Hara MW, McCabe JE. Postpartum depression: current status and future directions. Annu Rev Clin Psychol. 2013;9:379-407. doi: 10.1146/annurev-clinpsy-050212-185612. Epub 2013 Feb 1.

Reference Type BACKGROUND
PMID: 23394227 (View on PubMed)

Spinelli M, Poehlmann J, Bolt D. Predictors of parenting stress trajectories in premature infant-mother dyads. J Fam Psychol. 2013 Dec;27(6):873-83. doi: 10.1037/a0034652. Epub 2013 Nov 4.

Reference Type BACKGROUND
PMID: 24188086 (View on PubMed)

Shah PE, Clements M, Poehlmann J. Maternal resolution of grief after preterm birth: implications for infant attachment security. Pediatrics. 2011 Feb;127(2):284-92. doi: 10.1542/peds.2010-1080. Epub 2011 Jan 17.

Reference Type BACKGROUND
PMID: 21242223 (View on PubMed)

Lickliter R. The integrated development of sensory organization. Clin Perinatol. 2011 Dec;38(4):591-603. doi: 10.1016/j.clp.2011.08.007. Epub 2011 Oct 13.

Reference Type BACKGROUND
PMID: 22107892 (View on PubMed)

Hepper PG, Shahidullah BS. Development of fetal hearing. Arch Dis Child Fetal Neonatal Ed. 1994 Sep;71(2):F81-7. doi: 10.1136/fn.71.2.f81.

Reference Type BACKGROUND
PMID: 7979483 (View on PubMed)

Pineda RG, Stransky KE, Rogers C, Duncan MH, Smith GC, Neil J, Inder T. The single-patient room in the NICU: maternal and family effects. J Perinatol. 2012 Jul;32(7):545-51. doi: 10.1038/jp.2011.144. Epub 2011 Oct 27.

Reference Type BACKGROUND
PMID: 22031044 (View on PubMed)

Pineda, R., Neil, J., Dierker, D., Smyser, C., Kidokora, H., Reynolds, L., Walker, S., Rogers, C., Mathur, A., VanEssen, D., Inder, T., The Impact of Different Neonatal Intensive Care Environments on Brain Development and Function in Preterm Infants, 2012, Washington University School of Medicine.

Reference Type BACKGROUND

Caskey, M., Tucker, R., Vohr. Language environment in a single familly room NICU. in Pediatric Academic Societies. 2012. Boston, MA.

Reference Type BACKGROUND

Liu WF. Comparing sound measurements in the single-family room with open-unit design neonatal intensive care unit: the impact of equipment noise. J Perinatol. 2012 May;32(5):368-73. doi: 10.1038/jp.2011.103. Epub 2011 Aug 18.

Reference Type BACKGROUND
PMID: 21852773 (View on PubMed)

Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. J Clin Epidemiol. 2010 Dec;63(12):1308-11. doi: 10.1016/j.jclinepi.2010.07.001. Epub 2010 Jul 24. No abstract available.

Reference Type BACKGROUND
PMID: 20656455 (View on PubMed)

Pineda JA, Leonard JR, Mazotas IG, Noetzel M, Limbrick DD, Keller MS, Gill J, Doctor A. Effect of implementation of a paediatric neurocritical care programme on outcomes after severe traumatic brain injury: a retrospective cohort study. Lancet Neurol. 2013 Jan;12(1):45-52. doi: 10.1016/S1474-4422(12)70269-7. Epub 2012 Nov 28.

Reference Type BACKGROUND
PMID: 23200264 (View on PubMed)

Proctor EK, Powell BJ, Baumann AA, Hamilton AM, Santens RL. Writing implementation research grant proposals: ten key ingredients. Implement Sci. 2012 Oct 12;7:96. doi: 10.1186/1748-5908-7-96.

Reference Type BACKGROUND
PMID: 23062065 (View on PubMed)

Proctor E. Implementation science and child maltreatment: methodological advances. Child Maltreat. 2012 Feb;17(1):107-12. doi: 10.1177/1077559512437034. Epub 2012 Feb 15. No abstract available.

Reference Type BACKGROUND
PMID: 22337867 (View on PubMed)

Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, Griffey R, Hensley M. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011 Mar;38(2):65-76. doi: 10.1007/s10488-010-0319-7.

Reference Type BACKGROUND
PMID: 20957426 (View on PubMed)

Proctor EK, Landsverk J, Aarons G, Chambers D, Glisson C, Mittman B. Implementation research in mental health services: an emerging science with conceptual, methodological, and training challenges. Adm Policy Ment Health. 2009 Jan;36(1):24-34. doi: 10.1007/s10488-008-0197-4. Epub 2008 Dec 23.

Reference Type BACKGROUND
PMID: 19104929 (View on PubMed)

Proctor EK, Rosen A. From Knowledge Production to Implementation: Research Challenges and Imperatives. Res Soc Work Pract. 2008 Jul 1;18(4):285-291. doi: 10.1177/1049731507302263.

Reference Type BACKGROUND
PMID: 24089591 (View on PubMed)

Khlif MS, Colditz PB, Boashash B. Effective implementation of time-frequency matched filter with adapted pre and postprocessing for data-dependent detection of newborn seizures. Med Eng Phys. 2013 Dec;35(12):1762-9. doi: 10.1016/j.medengphy.2013.07.005. Epub 2013 Aug 21.

Reference Type BACKGROUND
PMID: 23972955 (View on PubMed)

Lobb R, Colditz GA. Implementation science and its application to population health. Annu Rev Public Health. 2013;34:235-51. doi: 10.1146/annurev-publhealth-031912-114444. Epub 2013 Jan 7.

Reference Type BACKGROUND
PMID: 23297655 (View on PubMed)

Wolin KY, Colditz GA, Proctor EK. Maximizing benefits for effective cancer survivorship programming: defining a dissemination and implementation plan. Oncologist. 2011;16(8):1189-96. doi: 10.1634/theoncologist.2011-0054. Epub 2011 Jul 17.

Reference Type BACKGROUND
PMID: 21765196 (View on PubMed)

Speilberger, C., State-Trait Anxiety Inventory for Adults. 2005-2008, Menlo Park, CA: Mind Garden.

Reference Type BACKGROUND

Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry. 1987 Jun;150:782-6. doi: 10.1192/bjp.150.6.782.

Reference Type BACKGROUND
PMID: 3651732 (View on PubMed)

Endler, N., Coping Inventory for Stressful Situations (CISS): Manual. 1990, Toronto: Multi-Health Systems.

Reference Type BACKGROUND

Abidin, R.R., Parenting stress index professional manual. 3 ed. 1995, Odessa, FL: Psychological Assessment Resources, Inc.

Reference Type BACKGROUND

Tronick E, Lester BM. Grandchild of the NBAS: the NICU network neurobehavioral scale (NNNS): a review of the research using the NNNS. J Child Adolesc Psychiatr Nurs. 2013 Aug;26(3):193-203. doi: 10.1111/jcap.12042.

Reference Type BACKGROUND
PMID: 23909942 (View on PubMed)

Dunn, W., Infant/Toddler Sensory Profile 2. 2014, San Antonio: Pearson Education, Inc.

Reference Type BACKGROUND

Squires, J., et al., Ages and Stages Questionnaires - 3. 2009, Baltimore, MD: Paul H. Brookes Publishing Co.

Reference Type BACKGROUND

Beck, A.T., R.A. Steer, and G.K. Brown, Manual for the beck depression inventory-II. 1996, San Antonio, TX: Psychological Corporation.

Reference Type BACKGROUND

Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983 Jun;67(6):361-70. doi: 10.1111/j.1600-0447.1983.tb09716.x.

Reference Type BACKGROUND
PMID: 6880820 (View on PubMed)

Snaith, R.P. and A.S. Zigmond, The hospital anxiety and depression scale manual. 1994, Windsor, Ontario: NFER-Nelson.

Reference Type BACKGROUND

Yu YT, Hsieh WS, Hsu CH, Chen LC, Lee WT, Chiu NC, Wu YC, Jeng SF. A psychometric study of the Bayley Scales of Infant and Toddler Development - 3rd Edition for term and preterm Taiwanese infants. Res Dev Disabil. 2013 Nov;34(11):3875-83. doi: 10.1016/j.ridd.2013.07.006. Epub 2013 Sep 9.

Reference Type BACKGROUND
PMID: 24029804 (View on PubMed)

Pineda RG, Tjoeng TH, Vavasseur C, Kidokoro H, Neil JJ, Inder T. Patterns of altered neurobehavior in preterm infants within the neonatal intensive care unit. J Pediatr. 2013 Mar;162(3):470-476.e1. doi: 10.1016/j.jpeds.2012.08.011. Epub 2012 Oct 1.

Reference Type RESULT
PMID: 23036482 (View on PubMed)

Howe TH, Sheu CF, Wang TN, Hsu YW. Parenting stress in families with very low birth weight preterm infants in early infancy. Res Dev Disabil. 2014 Jul;35(7):1748-56. doi: 10.1016/j.ridd.2014.02.015. Epub 2014 Mar 19.

Reference Type RESULT
PMID: 24656293 (View on PubMed)

Singer LT, Fulton S, Kirchner HL, Eisengart S, Lewis B, Short E, Min MO, Satayathum S, Kercsmar C, Baley JE. Longitudinal predictors of maternal stress and coping after very low-birth-weight birth. Arch Pediatr Adolesc Med. 2010 Jun;164(6):518-24. doi: 10.1001/archpediatrics.2010.81.

Reference Type RESULT
PMID: 20530301 (View on PubMed)

Wraight CL, McCoy J, Meadow W. Beyond stress: describing the experiences of families during neonatal intensive care. Acta Paediatr. 2015 Oct;104(10):1012-7. doi: 10.1111/apa.13071. Epub 2015 Jun 26.

Reference Type RESULT
PMID: 26058331 (View on PubMed)

Bouet KM, Claudio N, Ramirez V, Garcia-Fragoso L. Loss of parental role as a cause of stress in the neonatal intensive care unit. Bol Asoc Med P R. 2012 Jan-Mar;104(1):8-11.

Reference Type RESULT
PMID: 22788072 (View on PubMed)

Heinemann AB, Hellstrom-Westas L, Hedberg Nyqvist K. Factors affecting parents' presence with their extremely preterm infants in a neonatal intensive care room. Acta Paediatr. 2013 Jul;102(7):695-702. doi: 10.1111/apa.12267. Epub 2013 May 8.

Reference Type RESULT
PMID: 23590800 (View on PubMed)

Anderson P, Doyle LW; Victorian Infant Collaborative Study Group. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA. 2003 Jun 25;289(24):3264-72. doi: 10.1001/jama.289.24.3264.

Reference Type RESULT
PMID: 12824207 (View on PubMed)

Anderson PJ, Doyle LW. Cognitive and educational deficits in children born extremely preterm. Semin Perinatol. 2008 Feb;32(1):51-8. doi: 10.1053/j.semperi.2007.12.009.

Reference Type RESULT
PMID: 18249240 (View on PubMed)

Holsti L, Grunau RV, Whitfield MF. Developmental coordination disorder in extremely low birth weight children at nine years. J Dev Behav Pediatr. 2002 Feb;23(1):9-15. doi: 10.1097/00004703-200202000-00002.

Reference Type RESULT
PMID: 11889346 (View on PubMed)

Goyen TA, Lui K, Woods R. Visual-motor, visual-perceptual, and fine motor outcomes in very-low-birthweight children at 5 years. Dev Med Child Neurol. 1998 Feb;40(2):76-81. doi: 10.1111/j.1469-8749.1998.tb15365.x.

Reference Type RESULT
PMID: 9489494 (View on PubMed)

Pineda RG, Neil J, Dierker D, Smyser CD, Wallendorf M, Kidokoro H, Reynolds LC, Walker S, Rogers C, Mathur AM, Van Essen DC, Inder T. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J Pediatr. 2014 Jan;164(1):52-60.e2. doi: 10.1016/j.jpeds.2013.08.047. Epub 2013 Oct 17.

Reference Type RESULT
PMID: 24139564 (View on PubMed)

Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008 Feb;9(2):110-22. doi: 10.1038/nrn2252.

Reference Type RESULT
PMID: 18209730 (View on PubMed)

Burns CM, Rutherford MA, Boardman JP, Cowan FM. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics. 2008 Jul;122(1):65-74. doi: 10.1542/peds.2007-2822.

Reference Type RESULT
PMID: 18595988 (View on PubMed)

Berument SK, Sonmez D, Eyupoglu H. Supporting language and cognitive development of infants and young children living in children's homes in Turkey. Child Care Health Dev. 2012 Sep;38(5):743-52. doi: 10.1111/j.1365-2214.2011.01314.x. Epub 2011 Sep 27.

Reference Type RESULT
PMID: 21951265 (View on PubMed)

Daunhauer LA, Coster WJ, Tickle-Degnen L, Cermak SA. Effects of caregiver-child interactions on play occupations among young children institutionalized in Eastern Europe. Am J Occup Ther. 2007 Jul-Aug;61(4):429-40. doi: 10.5014/ajot.61.4.429.

Reference Type RESULT
PMID: 17685176 (View on PubMed)

Daunhauer LA, Coster WJ, Tickle-Degnen L, Cermak SA. Play and cognition among young children reared in an institution. Phys Occup Ther Pediatr. 2010 May;30(2):83-97. doi: 10.3109/01942630903543682.

Reference Type RESULT
PMID: 20367513 (View on PubMed)

Ellis BH, Fisher PA, Zaharie S. Predictors of disruptive behavior, developmental delays, anxiety, and affective symptomatology among institutionally reared romanian children. J Am Acad Child Adolesc Psychiatry. 2004 Oct;43(10):1283-92. doi: 10.1097/01.chi.0000136562.24085.160.

Reference Type RESULT
PMID: 15381896 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

201601057

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

NICU Parent Education Program
NCT02528227 COMPLETED NA