BVS-OCT Imaging Study

NCT ID: NCT03194711

Last Updated: 2018-05-07

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

40 participants

Study Classification

OBSERVATIONAL

Study Start Date

2017-05-30

Study Completion Date

2018-04-17

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The single center retrospective study evaluates the acute and long term outcomes of bioabsorbable drug-eluting scaffolds (BVS) implantation in 50 consecutive coronary artery disease (CAD) patients using optical coherence tomography (OCT) imaging.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

I. INTRODUCTION Bioabsorbable drug-eluting scaffolds ("BVS") have emerged as a potential major breakthrough for treatment of coronary artery lesions providing a possibility to overcome the long term limitations of conventional stent implantation which precludes future surgical revascularization, eliminates reactive vasomotion, impairs noninvasive imaging and exposes patients to the risk of very late stent thrombosis. BVS have been extensively studied in clinical trials. Treatment of noncomplex obstructive coronary artery disease with BVS was within the prespecified margin for noninferiority compared to Xience stent with respect to target lesion failure at 1 year in the latest large-scale randomized trial (ABRORB III). Although the concept of self-degrading stent is attractive and the results from clinical trials have been promising, there is a paucity of data regarding the use of BVS in "real world" patients undergoing percutaneous intervention ("PCI"). The outcomes from a large BVS registry of patients with relatively unselected clinical characteristics and lesions were comparable to those reported for the second generation drug eluting stents ("DES"), however, the scaffold thrombosis rate in the first 30 days after implantation resembled that of the first generation DES suggesting that the lesion selection and procedure optimization require further improvement. BVS development has required new imaging modalities, assessment methodologies, and treatment strategies because their design, degradation rate, coating, changes in mechanical properties may affect safety and efficacy of the device. Due to its high resolution, Optical Coherence Tomography ("OCT") imaging has played a central role in understanding the short and long term performance of bioresorbable scaffolds.

II. STUDY AIM To evaluate the acute and long term outcomes of BVS implantation in consecutive coronary artery disease ("CAD") patients using OCT imaging.

III. STUDY POPULATION Fifty (50) consecutive patients who underwent PCI with BVS implantation and OCT imaging for treatment of CAD.

IV. STUDY DESIGN This is a single center retrospective analysis of data collected under the EXEMPT database (GCO# 02-0178) at the Cardiac Catheterization Laboratory at Mt. Sinai Hospital.

V. STUDY PROCEDURES Patients with stable CAD who underwent PCI with BVS implantation. Lesions were treated with pre-dilatation using conventional semicompliant or non-compliant balloon. The use of additional devices, cutting balloons or rotablator, were performed at the operator's discretion. The operator made the decision on BVS length and size. First OCT pullback (OCT-PRE) was performed before BVS implantation to analyze lesion stenosis, references, and plaque morphology including the extent and location of calcification. In addition, online co-registration of OCT with coronary angiogram was performed to confirm the correct spatial orientation of OCT findings. The second OCT pullback (OCT - POST) was performed after BVS implantation followed by post-dilatation (20 atm). Angio-OCT co-registration was used to assess acute post-procedural results.

VI. STUDY OUTCOMES

* Acute lumen gain after BVS implantation by quantitative coronary angiography ("QCA") and OCT; effect of coronary calcification on lumen gain, BVS apposition and expansion.
* Review of the clinical follow up data which was collected at 1 month and 12 months after the procedure

VII. IMAGE ANALYSIS

QCA analysis. In each patient, the treated segment (in-scaffold) and the peri-scaffold segment (defined as 5 mm proximal and distal to the scaffold edge) will be analyzed by QCA in paired matched angiographic views before and after procedure using metallic markers at the proximal and distal ends of the device. Minimal lumen diameter (MLD), reference vessel diameter, percentage of area stenosis, and lesion length will be measured by two experienced analysts using dedicated software (QCA-QAngioXA 7.3; Medis) as previously described. Acute lumenal gain will be defined as the difference between MLD immediately after procedure and MLD before BVS implantation. In addition, the presence of angiographic calcification will be assessed. Calcification will be identified by angiography as readily apparent radiopacities within the vascular wall at the site of stenosis and will be classified as none/mild or moderate (radiopacities noted only during the cardiac cycle before contrast injection)/severe (radiopacities visible without cardiac motion before contrast injection usually compromising both sides of the lumen).

OCT lesion analysis will be performed offline at 1-mm interval according to previously validated criteria and as we previously described. The minimal and reference lumen diameter and area will be measured to calculate percent lumen area stenosis. Plaques will be classified as fibrous, lipid, or calcified. For each lipid plaque, the maximal lipid arc will be measured at 1-mm interval and the minimal thickness of the fibrous cap will be assessed. The degree of circumferential extent of calcification will be quantified at 1 mm interval by measuring the maximal calcification arc.

OCT analysis of BVS will be performed at 1-mm interval within the entire stented segment and at 5 mm proximal and distal to the BVS edge. For each cross section analyzed, the area, mean, minimal and maximal diameters of the BVS will be measured automatically with manual corrections if appropriate. The proximal and distal reference vessel area (RVA) will be calculated as the mean of the largest two lumenal areas 5 mm distal and proximal to the BVS edge. Acute strut fracture will be suspected if isolated struts are detected lying unopposed in the lumen with no connection to other surrounding stent struts. 3D OCT reconstruction with QAngio OCT RE software (Medis) will be performed to confirm the diagnosis. Incomplete strut apposition (ISA) will be defined as the presence of struts separated from the underlying vessel wall. The percentage of ISA will be calculated as a ratio of malapposed struts number to the total number of struts observed at 1-mm interval. Since abluminal border of the struts can be visualized in BVS, we will assess the ISA area for each frame with malapposed struts. The percentage of Residual Area Stenosis (RAS) will be calculated as: \[(1 - (minimal lumen area/RVA))\] ×50 ; the eccentricity index as the ratio between the minimal and the maximal diameter. The symmetry index will be defined as (maximal stent diameter - minimal stent diameter)/(maximal stent diameter). OCT analysis will be performed in Mount Sinai Cath Lab Core imaging laboratory.

VIII. PROPENSITY-MATCHED COMPARISON BETWEEN BVS AND DES A retrospective analysis will be performed on 50 study patients who underwent PCI with BVS and consecutive patients who underwent DES implantation in Mount Sinai catheterization laboratory with the comparator sample size of 50. The DES patients will be selected from the Mount Sinai imaging database. Propensity score matching will be performed to reduce the effect of confounding factors in the retrospective study for two groups of patients with different recruitment periods. Multiple logistic regression analysis will include the following variables as covariates: previous MI, previous CABG, CAD family history, history of smoking, dyslipidemia, diabetes mellitus, use of atherectomy device, stent/BVS post-dilatation, stent/BVS diameter and length, maximal calcium arc by OCT and total number of treated vessels.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Coronary Disease

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_ONLY

Study Time Perspective

RETROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Patients with stable CAD

BVS implantation

Intervention Type DEVICE

BVS implantation using conventional semicompliant or non-compliant balloon

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

BVS implantation

BVS implantation using conventional semicompliant or non-compliant balloon

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Consecutive patients who underwent PCI with BVS implantation and OCT imaging for treatment of CAD

Exclusion Criteria

* None
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Icahn School of Medicine at Mount Sinai

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Annapoorna Kini, MD, MRCP, FACC

Role: PRINCIPAL_INVESTIGATOR

Icahn School of Medicine at Mount Sinai

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Icahn School of Medicine at Mount Sinai

New York, New York, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Mattesini A, Secco GG, Dall'Ara G, Ghione M, Rama-Merchan JC, Lupi A, Viceconte N, Lindsay AC, De Silva R, Foin N, Naganuma T, Valente S, Colombo A, Di Mario C. ABSORB biodegradable stents versus second-generation metal stents: a comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc Interv. 2014 Jul;7(7):741-50. doi: 10.1016/j.jcin.2014.01.165.

Reference Type BACKGROUND
PMID: 25060016 (View on PubMed)

Serruys PW, Onuma Y, Garcia-Garcia HM, Muramatsu T, van Geuns RJ, de Bruyne B, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J, Windecker S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Hebert KM, Rapoza R, Ormiston JA. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention. 2014 Mar 20;9(11):1271-84. doi: 10.4244/EIJV9I11A217.

Reference Type BACKGROUND
PMID: 24291783 (View on PubMed)

Serruys PW, Chevalier B, Dudek D, Cequier A, Carrie D, Iniguez A, Dominici M, van der Schaaf RJ, Haude M, Wasungu L, Veldhof S, Peng L, Staehr P, Grundeken MJ, Ishibashi Y, Garcia-Garcia HM, Onuma Y. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015 Jan 3;385(9962):43-54. doi: 10.1016/S0140-6736(14)61455-0. Epub 2014 Sep 14.

Reference Type BACKGROUND
PMID: 25230593 (View on PubMed)

Kimura T, Kozuma K, Tanabe K, Nakamura S, Yamane M, Muramatsu T, Saito S, Yajima J, Hagiwara N, Mitsudo K, Popma JJ, Serruys PW, Onuma Y, Ying S, Cao S, Staehr P, Cheong WF, Kusano H, Stone GW; ABSORB Japan Investigators. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015 Dec 14;36(47):3332-42. doi: 10.1093/eurheartj/ehv435. Epub 2015 Sep 1.

Reference Type BACKGROUND
PMID: 26330419 (View on PubMed)

Ellis SG, Kereiakes DJ, Metzger DC, Caputo RP, Rizik DG, Teirstein PS, Litt MR, Kini A, Kabour A, Marx SO, Popma JJ, McGreevy R, Zhang Z, Simonton C, Stone GW; ABSORB III Investigators. Everolimus-Eluting Bioresorbable Scaffolds for Coronary Artery Disease. N Engl J Med. 2015 Nov 12;373(20):1905-15. doi: 10.1056/NEJMoa1509038. Epub 2015 Oct 12.

Reference Type BACKGROUND
PMID: 26457558 (View on PubMed)

Capodanno D, Gori T, Nef H, Latib A, Mehilli J, Lesiak M, Caramanno G, Naber C, Di Mario C, Colombo A, Capranzano P, Wiebe J, Araszkiewicz A, Geraci S, Pyxaras S, Mattesini A, Naganuma T, Munzel T, Tamburino C. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention. 2015 Feb;10(10):1144-53. doi: 10.4244/EIJY14M07_11.

Reference Type BACKGROUND
PMID: 25042421 (View on PubMed)

Garcia-Garcia HM, Serruys PW, Campos CM, Muramatsu T, Nakatani S, Zhang YJ, Onuma Y, Stone GW. Assessing bioresorbable coronary devices: methods and parameters. JACC Cardiovasc Imaging. 2014 Nov;7(11):1130-48. doi: 10.1016/j.jcmg.2014.06.018. Epub 2014 Nov 10.

Reference Type BACKGROUND
PMID: 25459595 (View on PubMed)

Ormiston JA, Serruys PW, Onuma Y, van Geuns RJ, de Bruyne B, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J, Windecker S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Hebert KM, Rapoza R, Garcia-Garcia HM. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ Cardiovasc Interv. 2012 Oct;5(5):620-32. doi: 10.1161/CIRCINTERVENTIONS.112.971549. Epub 2012 Oct 9.

Reference Type BACKGROUND
PMID: 23048057 (View on PubMed)

Kini AS, Vengrenyuk Y, Pena J, Motoyama S, Feig JE, Meelu OA, Rajamanickam A, Bhat AM, Panwar S, Baber U, Sharma SK. Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions. Catheter Cardiovasc Interv. 2015 Nov 15;86(6):1024-32. doi: 10.1002/ccd.26000. Epub 2015 May 11.

Reference Type BACKGROUND
PMID: 25964009 (View on PubMed)

Kini AS, Motoyama S, Vengrenyuk Y, Feig JE, Pena J, Baber U, Bhat AM, Moreno P, Kovacic JC, Narula J, Sharma SK. Multimodality Intravascular Imaging to Predict Periprocedural Myocardial Infarction During Percutaneous Coronary Intervention. JACC Cardiovasc Interv. 2015 Jun;8(7):937-45. doi: 10.1016/j.jcin.2015.03.016.

Reference Type BACKGROUND
PMID: 26088511 (View on PubMed)

Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G; International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT). Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012 Mar 20;59(12):1058-72. doi: 10.1016/j.jacc.2011.09.079.

Reference Type BACKGROUND
PMID: 22421299 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

GCO 16-2757

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

OCT Guided Magmaris RMS in STEMI
NCT03955731 RECRUITING NA