Early Use of Vasopressin in Post-Fontan Management

NCT ID: NCT03088345

Last Updated: 2020-07-07

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE2/PHASE3

Total Enrollment

20 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-03-06

Study Completion Date

2019-01-28

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This is an investigator initiated, prospective, single-center, double-blinded, randomized, placebo-controlled trial of post-operative low dose vasopressin infusions as an early treatment of low systemic perfusion in pediatric patients following Fontan palliation.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The treatments for preventing and managing low cardiac output syndrome after congenital heart surgery with cardiopulmonary bypass include manipulations of vascular volume and infusions of phosphodiesterase inhibitors (milrinone) and catecholamines (epinephrine and norepinephrine) for inotropic and vasoactive effects, all of which have associated risks which can contribute to morbidity and mortality. Vasopressin, a vasoactive drug with efficacy in septic shock, has also been utilized to improve postoperative hemodynamics after cardiac surgery in children. It is a common institutional practice to use vasopressin in this patient population, but usually after escalation through two or three other vasoactive drugs. There have been several studies in pediatrics and adults which suggest that vasopressin is not inferior to other vasoconstrictor therapies, and advantageous when looking at specific end points. The investigators propose to randomize the use of vasopressin to use at an earlier point in our typical post-operative medication strategy. The proposed study is a double blinded, randomized, placebo control study of vasopressin infusion immediately after the completion Fontan operation. The goal is to identify a vasoactive treatment strategy that improves hemodynamics with lower catecholamine infusion burden, reduces volume of fluid resuscitation, and reduces in-hospital resource utilization.

Neonatal and pediatric interventions associated with congenital heart disease (CHD) continue to produce improved outcomes. There are no established guidelines for managing patients after congenital heart surgery due to lesion-specific unique challenges in the post-operative period. Volume resuscitation and catecholamine infusions are the traditional treatment methods to maintain adequate perfusion. However, these two treatment modalities are associated with increased risk of worsening lung function and prolonged ventilator support with aggressive fluid resuscitation, increased myocardial oxygen demand, and precipitation of arrhythmias. Given the multifactorial etiology of postoperative low cardiac output syndrome, it is often unclear which catecholamine infusion is optimal to improve circulatory function. Vasopressin, an alternative vasoactive therapy commonly utilized in shock, has been utilized to improve postoperative hemodynamics in neonatal and pediatric patient populations and has recently gained more attention.

The use of arginine vasopressin infusion in infants and children after cardiac surgery was first reported in 1999 in a case series of 11 patients with vasodilatory shock in the postoperative period. This case series reported initiation of vasopressin for hypotension refractory to traditional treatment methods and reported a significant rise in hemodynamics with improved blood pressure in all patients as well as weaning inotropic support in 10/11 patients. Since this study there have been conflicting reports regarding vasopressin levels and the use of vasopressin to improve hemodynamics. Results from a study published in 2008 evaluated vasopressin levels in 39 patients with CHD in the pre and post-operative periods and concluded that children do not have deficient levels of vasopressin following surgery with cardiopulmonary bypass (CPB). In addition, lower levels were not associated with hypotension. A larger study in 2010 of 121 patients who had congenital heart surgery with CPB described results suggestive of clinically important hypotension associated with low vasopressin levels. Several other publications have reported improved blood pressure and decreased catecholamine usage in patients with CHD. Two of these reports have focused on vasopressin use in infants with single ventricle physiology. In all of these reported case series the vasopressin infusion has been initiated in the post-operative period as a rescue therapy. None of the studies have advocated for initiation of vasopressin immediately post-operatively and prior to a time period of hemodynamic instability, except for one retrospective chart review by Alten et al. This study from 2012 initiated vasopressin in the operating room after CPB in 19 neonates undergoing either an arterial switch for d-transposition of the great arteries or the Norwood palliation procedure for hypoplastic left heart syndrome. In this study, all neonates in whom vasopressin was initiated in the operating room received significantly lower amounts of volume replacement and catecholamine support in the immediate post-operative period. They also described lower heart rate, lower incidence of arrhythmias, shorter duration of mechanical ventilation and shorter intensive care unit stay when compared to lesion-matched control group. More recently in 2016, a single center retrospectively reviewed their experience with vasopressin and patients undergoing Fontan operations over a 10 year period and it's effects on chest tube output. They determined that patients receiving vasopressin perioperatively had less chest tube output and shorter duration of chest tube drainage in addition to shorter hospital length of stay and improved fluid balance as compared to historical controls.

There is a gap in the literature describing improved outcomes with a specific targeted vasoactive and inotropic therapy regimen to use in the post-operative Fontan procedure patients. This proposed novel study will further provide evidence for outcome based post-operative medical interventions. The proposed study is a double blinded, randomized control study of vasopressin infusion versus placebo in the first 24-hours after Fontan completion. The aim of this study is to evaluate the impact of vasopressin on the early postoperative course in a relatively homogenous population, with specific attention to catecholamine use, hemodynamics, pleural drainage, extracardiac organ function (kidney and liver) and length of stay. Furthermore, the investigators plan to evaluate vasopressin levels between the two groups.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Circulatory Perfusion Disorder Congenital Heart Disease Single-ventricle

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

QUADRUPLE

Participants Caregivers Investigators Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Vasopressin, Arginine

Patients randomized to this arm will receive a continuous arginine vasopressin in normal saline carrier infusion immediately following the modified ultrafiltration (MUF) period of their cardiac surgery.

Group Type EXPERIMENTAL

Vasopressin, Arginine

Intervention Type DRUG

Subjects will be started on a blinded continuous infusion of study drug/placebo in the OR, immediately following the completion of the MUF at 0.3 mU/kg/min. All caregivers will be blinded to the arm assignment. The infusion will run for 20 hours, at which time it will be weaned off at 0.1 mU/hr, over 3 hours.During the active study period, the care team will treat subjects per SOC, using any preferred medication to correct low cardiac output; there is no restriction on using open-label vasopressin during the active study treatment period.

Placebo

Patients randomized to this arm will receive a continuous normal saline carrier infusion immediately following the modified ultrafiltration (MUF) period of their cardiac surgery.

Group Type PLACEBO_COMPARATOR

Placebo

Intervention Type DRUG

Subjects will be started on a blinded continuous infusion of study drug/placebo in the OR, immediately following the completion of the MUF at 0.3 mU/kg/min. All caregivers will be blinded to the arm assignment. The infusion will run for 20 hours, at which time it will be weaned off at 0.1 mU/hr, over 3 hours.During the active study period, the care team will treat subjects per SOC, using any preferred medication to correct low cardiac output; there is no restriction on using open-label vasopressin during the active study treatment period.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Vasopressin, Arginine

Subjects will be started on a blinded continuous infusion of study drug/placebo in the OR, immediately following the completion of the MUF at 0.3 mU/kg/min. All caregivers will be blinded to the arm assignment. The infusion will run for 20 hours, at which time it will be weaned off at 0.1 mU/hr, over 3 hours.During the active study period, the care team will treat subjects per SOC, using any preferred medication to correct low cardiac output; there is no restriction on using open-label vasopressin during the active study treatment period.

Intervention Type DRUG

Placebo

Subjects will be started on a blinded continuous infusion of study drug/placebo in the OR, immediately following the completion of the MUF at 0.3 mU/kg/min. All caregivers will be blinded to the arm assignment. The infusion will run for 20 hours, at which time it will be weaned off at 0.1 mU/hr, over 3 hours.During the active study period, the care team will treat subjects per SOC, using any preferred medication to correct low cardiac output; there is no restriction on using open-label vasopressin during the active study treatment period.

Intervention Type DRUG

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Arginine Vasopressin Normal Saline

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Planned completion of Fontan palliation
* English or Spanish speaking
* Completion of Informed Consent

Exclusion Criteria

* Previous failed attempts at Fontan completion with subsequent takedown
* Planned concomitant atrioventricular valvuloplasty or neoaortic valve or arch reconstruction at the time of Fontan completion
* History of renal failure requiring renal replacement therapy
* Absence of informed consent
Minimum Eligible Age

3 Weeks

Maximum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Medical College of Wisconsin

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Amee Bigelow

Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

George Hoffman, MD

Role: PRINCIPAL_INVESTIGATOR

Medical College of Wisconsin

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Children's Hospital of Wisconsin

Milwaukee, Wisconsin, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Delmas A, Leone M, Rousseau S, Albanese J, Martin C. Clinical review: Vasopressin and terlipressin in septic shock patients. Crit Care. 2005 Apr;9(2):212-22. doi: 10.1186/cc2945. Epub 2004 Sep 9.

Reference Type BACKGROUND
PMID: 15774080 (View on PubMed)

Leibovitch L, Efrati O, Vardi A, Matok I, Barzilay Z, Paret G. Intractable hypotension in septic shock: successful treatment with vasopressin in an infant. Isr Med Assoc J. 2003 Aug;5(8):596-8. No abstract available.

Reference Type BACKGROUND
PMID: 12929303 (View on PubMed)

Tsuneyoshi I, Yamada H, Kakihana Y, Nakamura M, Nakano Y, Boyle WA 3rd. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med. 2001 Mar;29(3):487-93. doi: 10.1097/00003246-200103000-00004.

Reference Type BACKGROUND
PMID: 11373409 (View on PubMed)

Rosenzweig EB, Starc TJ, Chen JM, Cullinane S, Timchak DM, Gersony WM, Landry DW, Galantowicz ME. Intravenous arginine-vasopressin in children with vasodilatory shock after cardiac surgery. Circulation. 1999 Nov 9;100(19 Suppl):II182-6. doi: 10.1161/01.cir.100.suppl_2.ii-182.

Reference Type BACKGROUND
PMID: 10567301 (View on PubMed)

Hall LG, Oyen LJ, Taner CB, Cullinane DC, Baird TK, Cha SS, Sawyer MD. Fixed-dose vasopressin compared with titrated dopamine and norepinephrine as initial vasopressor therapy for septic shock. Pharmacotherapy. 2004 Aug;24(8):1002-12. doi: 10.1592/phco.24.11.1002.36139.

Reference Type BACKGROUND
PMID: 15338849 (View on PubMed)

Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, Charpie JR, Hirsch JC. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med. 2010 Mar;11(2):234-8. doi: 10.1097/PCC.0b013e3181b806fc.

Reference Type BACKGROUND
PMID: 19794327 (View on PubMed)

Gaies MG, Jeffries HE, Niebler RA, Pasquali SK, Donohue JE, Yu S, Gall C, Rice TB, Thiagarajan RR. Vasoactive-inotropic score is associated with outcome after infant cardiac surgery: an analysis from the Pediatric Cardiac Critical Care Consortium and Virtual PICU System Registries. Pediatr Crit Care Med. 2014 Jul;15(6):529-37. doi: 10.1097/PCC.0000000000000153.

Reference Type BACKGROUND
PMID: 24777300 (View on PubMed)

Argenziano M, Choudhri AF, Oz MC, Rose EA, Smith CR, Landry DW. A prospective randomized trial of arginine vasopressin in the treatment of vasodilatory shock after left ventricular assist device placement. Circulation. 1997 Nov 4;96(9 Suppl):II-286-90.

Reference Type BACKGROUND
PMID: 9386112 (View on PubMed)

Landry DW, Levin HR, Gallant EM, Ashton RC Jr, Seo S, D'Alessandro D, Oz MC, Oliver JA. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997 Mar 4;95(5):1122-5. doi: 10.1161/01.cir.95.5.1122.

Reference Type BACKGROUND
PMID: 9054839 (View on PubMed)

Landry DW, Levin HR, Gallant EM, Seo S, D'Alessandro D, Oz MC, Oliver JA. Vasopressin pressor hypersensitivity in vasodilatory septic shock. Crit Care Med. 1997 Aug;25(8):1279-82. doi: 10.1097/00003246-199708000-00012. No abstract available.

Reference Type BACKGROUND
PMID: 9267938 (View on PubMed)

Kampmeier TG, Rehberg S, Westphal M, Lange M. Vasopressin in sepsis and septic shock. Minerva Anestesiol. 2010 Oct;76(10):844-50.

Reference Type BACKGROUND
PMID: 20935620 (View on PubMed)

Dunser MW, Mayr AJ, Ulmer H, Ritsch N, Knotzer H, Pajk W, Luckner G, Mutz NJ, Hasibeder WR. The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysis. Anesth Analg. 2001 Jul;93(1):7-13. doi: 10.1097/00000539-200107000-00003.

Reference Type BACKGROUND
PMID: 11429329 (View on PubMed)

Jerath N, Frndova H, McCrindle BW, Gurofsky R, Humpl T. Clinical impact of vasopressin infusion on hemodynamics, liver and renal function in pediatric patients. Intensive Care Med. 2008 Jul;34(7):1274-80. doi: 10.1007/s00134-008-1055-2. Epub 2008 Mar 19.

Reference Type BACKGROUND
PMID: 18350274 (View on PubMed)

Tweddell JS, Nersesian M, Mussatto KA, Nugent M, Simpson P, Mitchell ME, Ghanayem NS, Pelech AN, Marla R, Hoffman GM. Fontan palliation in the modern era: factors impacting mortality and morbidity. Ann Thorac Surg. 2009 Oct;88(4):1291-9. doi: 10.1016/j.athoracsur.2009.05.076.

Reference Type BACKGROUND
PMID: 19766824 (View on PubMed)

Hirsch JC, Goldberg C, Bove EL, Salehian S, Lee T, Ohye RG, Devaney EJ. Fontan operation in the current era: a 15-year single institution experience. Ann Surg. 2008 Sep;248(3):402-10. doi: 10.1097/SLA.0b013e3181858286.

Reference Type BACKGROUND
PMID: 18791360 (View on PubMed)

Meyer DB, Zamora G, Wernovsky G, Ittenbach RF, Gallagher PR, Tabbutt S, Gruber PJ, Nicolson SC, Gaynor JW, Spray TL. Outcomes of the Fontan procedure using cardiopulmonary bypass with aortic cross-clamping. Ann Thorac Surg. 2006 Nov;82(5):1611-8; discussion 1618-20. doi: 10.1016/j.athoracsur.2006.05.106.

Reference Type BACKGROUND
PMID: 17062214 (View on PubMed)

Evora PR, Pearson PJ, Schaff HV. Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery. V1-receptor-mediated production of nitric oxide. Chest. 1993 Apr;103(4):1241-5. doi: 10.1378/chest.103.4.1241.

Reference Type BACKGROUND
PMID: 8131474 (View on PubMed)

Sai Y, Okamura T, Amakata Y, Toda N. Comparison of responses of canine pulmonary artery and vein to angiotensin II, bradykinin and vasopressin. Eur J Pharmacol. 1995 Aug 25;282(1-3):235-41. doi: 10.1016/0014-2999(95)00343-j.

Reference Type BACKGROUND
PMID: 7498282 (View on PubMed)

Novella S, Martinez AC, Pagan RM, Hernandez M, Garcia-Sacristan A, Gonzalez-Pinto A, Gonzalez-Santos JM, Benedito S. Plasma levels and vascular effects of vasopressin in patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg. 2007 Jul;32(1):69-76. doi: 10.1016/j.ejcts.2007.03.047. Epub 2007 May 15.

Reference Type BACKGROUND
PMID: 17507236 (View on PubMed)

Morrison WE, Simone S, Conway D, Tumulty J, Johnson C, Cardarelli M. Levels of vasopressin in children undergoing cardiopulmonary bypass. Cardiol Young. 2008 Apr;18(2):135-40. doi: 10.1017/S1047951108001881. Epub 2008 Mar 7.

Reference Type BACKGROUND
PMID: 18325140 (View on PubMed)

Mastropietro CW, Rossi NF, Clark JA, Chen H, Walters H 3rd, Delius R, Lieh-Lai M, Sarnaik AP. Relative deficiency of arginine vasopressin in children after cardiopulmonary bypass. Crit Care Med. 2010 Oct;38(10):2052-8. doi: 10.1097/CCM.0b013e3181eed91d.

Reference Type BACKGROUND
PMID: 20683257 (View on PubMed)

Lechner E, Hofer A, Mair R, Moosbauer W, Sames-Dolzer E, Tulzer G. Arginine-vasopressin in neonates with vasodilatory shock after cardiopulmonary bypass. Eur J Pediatr. 2007 Dec;166(12):1221-7. doi: 10.1007/s00431-006-0400-0. Epub 2007 Jan 16.

Reference Type BACKGROUND
PMID: 17225160 (View on PubMed)

Mastropietro CW, Clark JA, Delius RE, Walters HL 3rd, Sarnaik AP. Arginine vasopressin to manage hypoxemic infants after stage I palliation of single ventricle lesions. Pediatr Crit Care Med. 2008 Sep;9(5):506-10. doi: 10.1097/PCC.0b013e3181849ce0.

Reference Type BACKGROUND
PMID: 18679141 (View on PubMed)

Alten JA, Borasino S, Toms R, Law MA, Moellinger A, Dabal RJ. Early initiation of arginine vasopressin infusion in neonates after complex cardiac surgery. Pediatr Crit Care Med. 2012 May;13(3):300-4. doi: 10.1097/PCC.0b013e31822f1753.

Reference Type BACKGROUND
PMID: 21926664 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

IRBNet 885148

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Nesiritide Use Following Cardiac Surgery in Infants
NCT00281671 TERMINATED PHASE1/PHASE2