Markers of Inflammation and Lung Recovery in ECMO Patients for PPHN
NCT ID: NCT02940327
Last Updated: 2020-03-19
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
24 participants
OBSERVATIONAL
2016-02-19
2017-07-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Physiological Phenotyping of Respiratory Outcomes in Infants Born Premature
NCT03906708
Functional and Lymphocytic Markers of Respiratory Morbidity in Hyperoxic Preemies
NCT01607216
Peripheral Fractional Tissue Oxygen Extraction and Infection in Term and Preterm Neonates
NCT04818762
PNEUMACRIT Device for Neonatal Cardio Respiratory Monitoring
NCT06171867
Circulatory Changes During Venovenous (VV)- and Venoarterial (VA) Extracorporeal Membrane Oxygenation (ECMO)
NCT00622492
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The secondary hypothesis are:
1. Damage to red cells will result in platelet, leukocyte and endothelial activation.
2. Markers of platelet, endothelial and leukocyte activation are indicators of lung inflammation and injury severity and hence lung recovery.
3. Markers of platelet, endothelial and leukocyte activation are indicators of kidney injury severity and hence acute kidney injury.
4. The level of oxidative stress will correlate with type shifts in pulmonary macrophages, tissue iron deposition and organ injury.
5. Ability to raise anti-oxidative response, measured by Heme Oxigenase-1 (HMOX 1) expression, will correlate with shorter intubation times and less severe kidney and lung injury.
6. Granulocyte and platelets activation are secondary to rising redox potential and the levels of activation will correlate with longer intubation times and more severe organ injury.
7. Markers of anti-oxidative response, platelet, endothelial and leukocyte activation, as well as oxidative stress levels have diagnostic and prognostic utility for the prediction of key clinical events including delayed time to recovery, acute kidney injury in paediatric patients undergoing Extra-Corporeal Membrane Oxygenation (ECMO) for Persistent Pulmonary Hypertension of the Newborn (PPHN).
This is a pilot feasibility study that will establish the following:
1. Recruitment rates and patient flows for 24 patients specified as the target population for the feasibility study
2. Withdrawal rate, and completeness of follow-up and data collection in a paediatric population at high risk for death and major morbidity
3. The proportions (categorical data) and variance (continuous data) for the primary and secondary outcomes of interest. These will be used to model the sample sizes and outcomes that may be used in a definitive study
4. Perceptions of family members whose children participate in the study as to the appropriateness of the screening and consent process
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Patients that require ECMO support as determined by the ECMO team
3. Patients aged less than 30 days
4. Emergency consent obtained within 12 hours from cannulation, and ultimately full consent
Exclusion Criteria
2. ECMO is required for a congenital heart disease
3. Lack of consent
30 Days
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospitals, Leicester
OTHER
Heart Link Children's Charity
OTHER
British Heart Foundation
OTHER
University of Leicester
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospitals of Leicester NHS Trust
Leicester, , United Kingdom
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Mamikonian LS, Mamo LB, Smith PB, Koo J, Lodge AJ, Turi JL. Cardiopulmonary bypass is associated with hemolysis and acute kidney injury in neonates, infants, and children*. Pediatr Crit Care Med. 2014 Mar;15(3):e111-9. doi: 10.1097/PCC.0000000000000047.
Schaible T, Hermle D, Loersch F, Demirakca S, Reinshagen K, Varnholt V. A 20-year experience on neonatal extracorporeal membrane oxygenation in a referral center. Intensive Care Med. 2010 Jul;36(7):1229-34. doi: 10.1007/s00134-010-1886-5. Epub 2010 Apr 28.
Mugford M, Elbourne D, Field D. Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants. Cochrane Database Syst Rev. 2008 Jul 16;(3):CD001340. doi: 10.1002/14651858.CD001340.pub2.
Konduri GG, Kim UO. Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatr Clin North Am. 2009 Jun;56(3):579-600, Table of Contents. doi: 10.1016/j.pcl.2009.04.004.
Bahrami KR, Van Meurs KP. ECMO for neonatal respiratory failure. Semin Perinatol. 2005 Feb;29(1):15-23. doi: 10.1053/j.semperi.2005.02.004.
UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation. UK Collaborative ECMO Trail Group. Lancet. 1996 Jul 13;348(9020):75-82.
Zwiers AJ, de Wildt SN, Hop WC, Dorresteijn EM, Gischler SJ, Tibboel D, Cransberg K. Acute kidney injury is a frequent complication in critically ill neonates receiving extracorporeal membrane oxygenation: a 14-year cohort study. Crit Care. 2013 Jul 24;17(4):R151. doi: 10.1186/cc12830.
Lazar DA, Cass DL, Olutoye OO, Welty SE, Fernandes CJ, Rycus PT, Lee TC. The use of ECMO for persistent pulmonary hypertension of the newborn: a decade of experience. J Surg Res. 2012 Oct;177(2):263-7. doi: 10.1016/j.jss.2012.07.058. Epub 2012 Aug 10.
McNally H, Bennett CC, Elbourne D, Field DJ; UK Collaborative ECMO Trial Group. United Kingdom collaborative randomized trial of neonatal extracorporeal membrane oxygenation: follow-up to age 7 years. Pediatrics. 2006 May;117(5):e845-54. doi: 10.1542/peds.2005-1167. Epub 2006 Apr 24.
Farrow KN, Fliman P, Steinhorn RH. The diseases treated with ECMO: focus on PPHN. Semin Perinatol. 2005 Feb;29(1):8-14. doi: 10.1053/j.semperi.2005.02.003.
Bendapudi P, Rao GG, Greenough A. Diagnosis and management of persistent pulmonary hypertension of the newborn. Paediatr Respir Rev. 2015 Jun;16(3):157-61. doi: 10.1016/j.prrv.2015.02.001. Epub 2015 Feb 10.
Puthiyachirakkal M, Mhanna MJ. Pathophysiology, management, and outcome of persistent pulmonary hypertension of the newborn: a clinical review. Front Pediatr. 2013 Sep 2;1:23. doi: 10.3389/fped.2013.00023.
McILwain RB, Timpa JG, Kurundkar AR, Holt DW, Kelly DR, Hartman YE, Neel ML, Karnatak RK, Schelonka RL, Anantharamaiah GM, Killingsworth CR, Maheshwari A. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Invest. 2010 Jan;90(1):128-39. doi: 10.1038/labinvest.2009.119. Epub 2009 Nov 9.
Fortenberry JD, Bhardwaj V, Niemer P, Cornish JD, Wright JA, Bland L. Neutrophil and cytokine activation with neonatal extracorporeal membrane oxygenation. J Pediatr. 1996 May;128(5 Pt 1):670-8. doi: 10.1016/s0022-3476(96)80133-8.
Mildner RJ, Taub N, Vyas JR, Killer HM, Firmin RK, Field DJ, Kotecha S. Cytokine imbalance in infants receiving extracorporeal membrane oxygenation for respiratory failure. Biol Neonate. 2005;88(4):321-7. doi: 10.1159/000087630. Epub 2005 Aug 18.
Graulich J, Walzog B, Marcinkowski M, Bauer K, Kossel H, Fuhrmann G, Buhrer C, Gaehtgens P, Versmold HT. Leukocyte and endothelial activation in a laboratory model of extracorporeal membrane oxygenation (ECMO). Pediatr Res. 2000 Nov;48(5):679-84. doi: 10.1203/00006450-200011000-00021.
Golej J, Winter P, Schoffmann G, Kahlbacher H, Stoll E, Boigner H, Trittenwein G. Impact of extracorporeal membrane oxygenation modality on cytokine release during rescue from infant hypoxia. Shock. 2003 Aug;20(2):110-5. doi: 10.1097/01.shk.0000075571.93053.2c.
Butler J, Pathi VL, Paton RD, Logan RW, MacArthur KJ, Jamieson MP, Pollock JC. Acute-phase responses to cardiopulmonary bypass in children weighing less than 10 kilograms. Ann Thorac Surg. 1996 Aug;62(2):538-42.
Kozik DJ, Tweddell JS. Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2006 Jun;81(6):S2347-54. doi: 10.1016/j.athoracsur.2006.02.073.
Day JR, Taylor KM. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int J Surg. 2005;3(2):129-40. doi: 10.1016/j.ijsu.2005.04.002. Epub 2005 Aug 1.
Warren OJ, Smith AJ, Alexiou C, Rogers PL, Jawad N, Vincent C, Darzi AW, Athanasiou T. The inflammatory response to cardiopulmonary bypass: part 1--mechanisms of pathogenesis. J Cardiothorac Vasc Anesth. 2009 Apr;23(2):223-31. doi: 10.1053/j.jvca.2008.08.007. Epub 2008 Oct 19. No abstract available.
Warren OJ, Watret AL, de Wit KL, Alexiou C, Vincent C, Darzi AW, Athanasiou T. The inflammatory response to cardiopulmonary bypass: part 2--anti-inflammatory therapeutic strategies. J Cardiothorac Vasc Anesth. 2009 Jun;23(3):384-93. doi: 10.1053/j.jvca.2008.09.007. Epub 2008 Dec 3. No abstract available.
Williams DC, Turi JL, Hornik CP, Bonadonna DK, Williford WL, Walczak RJ, Watt KM, Cheifetz IM. Circuit oxygenator contributes to extracorporeal membrane oxygenation-induced hemolysis. ASAIO J. 2015 Mar-Apr;61(2):190-5. doi: 10.1097/MAT.0000000000000173.
Omar HR, Mirsaeidi M, Socias S, Sprenker C, Caldeira C, Camporesi EM, Mangar D. Plasma Free Hemoglobin Is an Independent Predictor of Mortality among Patients on Extracorporeal Membrane Oxygenation Support. PLoS One. 2015 Apr 22;10(4):e0124034. doi: 10.1371/journal.pone.0124034. eCollection 2015.
Lou S, MacLaren G, Best D, Delzoppo C, Butt W. Hemolysis in pediatric patients receiving centrifugal-pump extracorporeal membrane oxygenation: prevalence, risk factors, and outcomes. Crit Care Med. 2014 May;42(5):1213-20. doi: 10.1097/CCM.0000000000000128.
Lubnow M, Philipp A, Foltan M, Bull Enger T, Lunz D, Bein T, Haneya A, Schmid C, Riegger G, Muller T, Lehle K. Technical complications during veno-venous extracorporeal membrane oxygenation and their relevance predicting a system-exchange--retrospective analysis of 265 cases. PLoS One. 2014 Dec 2;9(12):e112316. doi: 10.1371/journal.pone.0112316. eCollection 2014.
Maslach-Hubbard A, Bratton SL. Extracorporeal membrane oxygenation for pediatric respiratory failure: History, development and current status. World J Crit Care Med. 2013 Nov 4;2(4):29-39. doi: 10.5492/wjccm.v2.i4.29. eCollection 2013 Nov 4.
Toomasian JM, Bartlett RH. Hemolysis and ECMO pumps in the 21st Century. Perfusion. 2011 Jan;26(1):5-6. doi: 10.1177/0267659110396015. No abstract available.
Smith A, McCulloh RJ. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol. 2015 Jun 30;6:187. doi: 10.3389/fphys.2015.00187. eCollection 2015.
Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol. 2014 Oct 28;5:415. doi: 10.3389/fphys.2014.00415. eCollection 2014.
Hanssen SJ, van de Poll MC, Houben AJ, Windsant IC, Snoeijs MG, Bekers O, Buurman WA, Jacobs MJ. Hemolysis compromises nitric oxide-dependent vasodilatory responses in patients undergoing major cardiovascular surgery. Thorac Cardiovasc Surg. 2012 Jun;60(4):255-61. doi: 10.1055/s-0031-1299571. Epub 2012 Mar 12.
Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005 Apr 6;293(13):1653-62. doi: 10.1001/jama.293.13.1653.
Vermeulen Windsant IC, de Wit NC, Sertorio JT, van Bijnen AA, Ganushchak YM, Heijmans JH, Tanus-Santos JE, Jacobs MJ, Maessen JG, Buurman WA. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol. 2014 Sep 8;5:340. doi: 10.3389/fphys.2014.00340. eCollection 2014.
Vermeulen Windsant IC, Hanssen SJ, Buurman WA, Jacobs MJ. Cardiovascular surgery and organ damage: time to reconsider the role of hemolysis. J Thorac Cardiovasc Surg. 2011 Jul;142(1):1-11. doi: 10.1016/j.jtcvs.2011.02.012. Epub 2011 May 13. No abstract available.
Haase M, Bellomo R, Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol. 2010 May 11;55(19):2024-33. doi: 10.1016/j.jacc.2009.12.046.
Irwin DC, Baek JH, Hassell K, Nuss R, Eigenberger P, Lisk C, Loomis Z, Maltzahn J, Stenmark KR, Nozik-Grayck E, Buehler PW. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration. Free Radic Biol Med. 2015 May;82:50-62. doi: 10.1016/j.freeradbiomed.2015.01.012. Epub 2015 Feb 2.
Brittain EL, Janz DR, Austin ED, Bastarache JA, Wheeler LA, Ware LB, Hemnes AR. Elevation of plasma cell-free hemoglobin in pulmonary arterial hypertension. Chest. 2014 Dec;146(6):1478-1485. doi: 10.1378/chest.14-0809.
Buehler PW, Baek JH, Lisk C, Connor I, Sullivan T, Kominsky D, Majka S, Stenmark KR, Nozik-Grayck E, Bonaventura J, Irwin DC. Free hemoglobin induction of pulmonary vascular disease: evidence for an inflammatory mechanism. Am J Physiol Lung Cell Mol Physiol. 2012 Aug 15;303(4):L312-26. doi: 10.1152/ajplung.00074.2012. Epub 2012 Jun 22.
Murphy GJ, Verheyden V, Wozniak M, Sullo N, Dott W, Bhudia S, Bittar N, Morris T, Ring A, Tebbatt A, Kumar T. Trial protocol for a randomised controlled trial of red cell washing for the attenuation of transfusion-associated organ injury in cardiac surgery: the REDWASH trial. Open Heart. 2016 Mar 7;3(1):e000344. doi: 10.1136/openhrt-2015-000344. eCollection 2016.
Meyer AD, Gelfond JA, Wiles AA, Freishtat RJ, Rais-Bahrami K. Platelet-derived microparticles generated by neonatal extracorporeal membrane oxygenation systems. ASAIO J. 2015 Jan-Feb;61(1):37-42. doi: 10.1097/MAT.0000000000000164.
Nascimbene A, Hernandez R, George JK, Parker A, Bergeron AL, Pradhan S, Vijayan KV, Civitello A, Simpson L, Nawrot M, Lee VV, Mallidi HR, Delgado RM, Dong JF, Frazier OH. Association between cell-derived microparticles and adverse events in patients with nonpulsatile left ventricular assist devices. J Heart Lung Transplant. 2014 May;33(5):470-7. doi: 10.1016/j.healun.2014.01.004. Epub 2014 Jan 19.
Chung J, Suzuki H, Tabuchi N, Sato K, Shibamiya A, Koyama T. Identification of tissue factor and platelet-derived particles on leukocytes during cardiopulmonary bypass by flow cytometry and immunoelectron microscopy. Thromb Haemost. 2007 Aug;98(2):368-74.
Fu L, Hu XX, Lin ZB, Chang FJ, Ou ZJ, Wang ZP, Ou JS. Circulating microparticles from patients with valvular heart disease and cardiac surgery inhibit endothelium-dependent vasodilation. J Thorac Cardiovasc Surg. 2015 Sep;150(3):666-72. doi: 10.1016/j.jtcvs.2015.05.069. Epub 2015 Jun 5.
Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin KN, Roozendaal KJ, Jansen PG, ten Have K, Eijsman L, Hack CE, Sturk A. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation. 1997 Nov 18;96(10):3534-41. doi: 10.1161/01.cir.96.10.3534.
Fontaine D, Pradier O, Hacquebard M, Stefanidis C, Carpentier Y, de Canniere D, Fontaine J, Berkenboom G. Oxidative stress produced by circulating microparticles in on-pump but not in off-pump coronary surgery. Acta Cardiol. 2009 Dec;64(6):715-22. doi: 10.2143/AC.64.6.2044733.
Biro E, Sturk-Maquelin KN, Vogel GM, Meuleman DG, Smit MJ, Hack CE, Sturk A, Nieuwland R. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost. 2003 Dec;1(12):2561-8. doi: 10.1046/j.1538-7836.2003.00456.x.
Larson MC, Hillery CA, Hogg N. Circulating membrane-derived microvesicles in redox biology. Free Radic Biol Med. 2014 Aug;73:214-28. doi: 10.1016/j.freeradbiomed.2014.04.017. Epub 2014 Apr 18.
Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007 May;21(3):157-71. doi: 10.1016/j.blre.2006.09.001. Epub 2006 Nov 22.
Lovren F, Verma S. Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clin Chem. 2013 Aug;59(8):1166-74. doi: 10.1373/clinchem.2012.199711. Epub 2013 Mar 25.
Yong PJ, Koh CH, Shim WS. Endothelial microparticles: missing link in endothelial dysfunction? Eur J Prev Cardiol. 2013 Jun;20(3):496-512. doi: 10.1177/2047487312445001. Epub 2012 Apr 10.
Bhutani VK. Developing a systems approach to prevent meconium aspiration syndrome: lessons learned from multinational studies. J Perinatol. 2008 Dec;28 Suppl 3:S30-5. doi: 10.1038/jp.2008.159.
Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007 May;71(10):1028-35. doi: 10.1038/sj.ki.5002231. Epub 2007 Mar 28.
Howie SR. Blood sample volumes in child health research: review of safe limits. Bull World Health Organ. 2011 Jan 1;89(1):46-53. doi: 10.2471/BLT.10.080010. Epub 2010 Sep 10.
Modi N, Vohra J, Preston J, Elliott C, Van't Hoff W, Coad J, Gibson F, Partridge L, Brierley J, Larcher V, Greenough A; Working Party of the Royal College of Paediatrics and Child Health. Guidance on clinical research involving infants, children and young people: an update for researchers and research ethics committees. Arch Dis Child. 2014 Oct;99(10):887-91. doi: 10.1136/archdischild-2014-306444. Epub 2014 Jun 9. No abstract available.
Brierley J, Larcher V. Emergency research in children: options for ethical recruitment. J Med Ethics. 2011 Jul;37(7):429-32. doi: 10.1136/jme.2010.040667. Epub 2011 Feb 23.
Marc-Aurele KL, Steinman SL, Ransom KM, Finer NN, Dunn LB. Evaluation of the content and process of informed consent discussions for neonatal research. J Empir Res Hum Res Ethics. 2012 Jul;7(3):78-83. doi: 10.1525/jer.2012.7.3.78.
Joffe S, Cook EF, Cleary PD, Clark JW, Weeks JC. Quality of informed consent: a new measure of understanding among research subjects. J Natl Cancer Inst. 2001 Jan 17;93(2):139-47. doi: 10.1093/jnci/93.2.139.
Pais P, Robinson S, Majithia-Beet G, Lotto A, Kumar T, Westrope C, Sullo N, Eagle Hemming B, Joel-David L, JnTala M, Corazzari C, Grazioli L, Smallwood D, Murphy GJ, Lai FY, Wozniak MJ. Biomarkers of Inflammation and Lung Recovery in Extracorporeal Membrane Oxygenation Patients With Persistent Pulmonary Hypertension of the Newborn: A Feasibility Study. Pediatr Crit Care Med. 2020 Apr;21(4):363-372. doi: 10.1097/PCC.0000000000002173.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol
Document Type: Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
0553
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.