Remote Ischemic Preconditioning for Carotid Endarterectomy
NCT ID: NCT02808754
Last Updated: 2019-02-08
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
86 participants
INTERVENTIONAL
2016-12-31
2019-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Remote Ischemic Preconditioning on Brain Injury in Carotid Endarterectomy
NCT03027011
Study of Early Versus Delayed Carotid Endarterectomy (CEA) for Small to Medium-sized Ischemic Stroke Caused by High-grade Carotid Stenosis
NCT00315562
Risk Factors for Complications After Carotid Endarterectomy
NCT03788980
Remote Preconditioning Over Time To Empower Cerebral Tissue
NCT02169739
" Endarterectomy Combined With Optimal Medical Therapy (OMT) vs OMT Alone in Patients With Asymptomatic Severe Atherosclerotic Carotid Artery Stenosis at Higher-than-average Risk of Ipsilateral Stroke "
NCT02841098
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Due to its high metabolic activity, the brain is especially vulnerable to periods of ischemia during carotid cross clamping. Ischemic tolerance has been demonstrated after direct ischemic conditioning in the brain. However, direct conditioning is difficult and potentially dangerous when is comes to carotid interventions making remote ischemic preconditioning an attractive alternative. In animal models, remote ischemic preconditioning (RIPC) has been shown to produce an equivalent response to direct neuronal conditioning at the cellular level.
The precise mechanisms underlying the phenomenon of RIPC have yet to be fully elucidated. However, It is likely that both neural and humoral mechanisms are at play. Multiple studies have shown decreased levels of inflammatory markers in brains of animal models undergoing RIPC and then middle cerebral artery occlusion.
There has only been one study of RIPC in carotid endarterectomy so far. Patients were randomized to 10 min ischemia on each leg prior to clamping the carotid. Primary outcome was significant postoperative deterioration in saccadic latency determined by quantitative oculometry (time taken to respond and fix on a visual stimulus that appears suddenly). Additionally, troponins were drawn up to 48 hours post operatively. There was deterioration in quantitative oculometry in 8/25 RIPC and 16/30 control (p=0.11) and no difference in troponins. However this was a small number of patients.
Major clinical events such as stroke or MI are uncommon following CEA. This hampers the assessment of new, novel interventions as any trial would require several thousand patients to detect a useful clinical effect. The only alternative is to use surrogate end points to obtain "proof of concept" justifying larger trials. Several serum markers of neuronal damage such as S100-beta and neuron-specific enolase have been identified but are not reliable or specific enough to be used clinically. Another surrogate that is directly related to the concept of subtle degrees of neuronal ischemia occurring during CEA is neurocognitive function.
20-25% of patients have been shown to experience significant cognitive decline following CEA. This has been correlated with findings of ischemia on diffusion weighted MRI in patients after CEA indicating that local ischemia and microemboli are responsible for this decline. Thus, neurocognitive testing before and after carotid revascularization may be an ideal surrogate end point to study in remote ischemic preconditioning and it's potential to mediate the subtle degree of neuronal ischemia produced during carotid revascularization. However, neurocognitive function is also an endpoint with clinical relevance to patients.
This study will be a double armed randomized trial. The treatment arm will be Remote ischemic preconditioning and the Control arm will be Usual care. Intervention allocation ratio will be 1:1 RIPC:usual care. Randomization strategy will be a using a 1:1 fixed block of 4 randomization stratified by symptom status and age. Those randomized to RIPC will undergo a standard protocol of 4 cycles of 5 minutes of forearm ischemia with 5 minutes of reperfusion requiring 35 minutes for an application. Forearm ischemia will be induced by a blood pressure cuff inflated to 200 millimeters of mercury (mmHg) or at least 15mmHg higher than the systolic pressure if systolic \> 185mmHg or until the radial pulse is obliterated. This can occur during anesthesia induction and incision/dissection prior to manipulation or clamping of the carotid.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Usual Care
Patients in the usual care arm will undergo CEA without RIPC.
No interventions assigned to this group
Remote Ischemic Preconditioning
Patients in the RIPC arm will undergo CEA with RIPC.
Remote Ischemic Preconditioning
Those randomized to RIPC will undergo a standard protocol of 4 cycles of 5 minutes of forearm ischemia with 5 minutes of reperfusion requiring 35 minutes for an application. Forearm ischemia will be induced by a blood pressure cuff inflated to 200mmHg or at least 15mmHg higher than the systolic pressure if systolic \> 185mmHg or until the radial pulse is obliterated. This can occur during anesthesia induction and incision/dissection prior to manipulation or clamping of the carotid.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Remote Ischemic Preconditioning
Those randomized to RIPC will undergo a standard protocol of 4 cycles of 5 minutes of forearm ischemia with 5 minutes of reperfusion requiring 35 minutes for an application. Forearm ischemia will be induced by a blood pressure cuff inflated to 200mmHg or at least 15mmHg higher than the systolic pressure if systolic \> 185mmHg or until the radial pulse is obliterated. This can occur during anesthesia induction and incision/dissection prior to manipulation or clamping of the carotid.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Indication for surgery must be symptomatic disease with \>50% stenosis by duplex ultrasound or asymptomatic disease with \>60% stenosis by duplex ultrasound
Exclusion Criteria
* Known Deep venous thrombosis (DVT) in arm
* Arteriovenous fistula or graft in both arms
* Diagnosed hypercoagulable state
* Pre-existing lymphedema or axillary node dissection both arms
* Diagnosis of dementia, intellectual disability, or mental illness including depression, anxiety, or schizophrenia
* Simultaneous coronary artery bypass grafting
55 Years
95 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Pittsburgh
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Natalie Domenick Sridharan
MD
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Natalie Sridharan, MD
Role: PRINCIPAL_INVESTIGATOR
University of Pittsburgh
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
UPMC
Pittsburgh, Pennsylvania, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Rothwell PM, Eliasziw M, Gutnikov SA, Fox AJ, Taylor DW, Mayberg MR, Warlow CP, Barnett HJ; Carotid Endarterectomy Trialists' Collaboration. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003 Jan 11;361(9352):107-16. doi: 10.1016/s0140-6736(03)12228-3.
LaMuraglia GM, Brewster DC, Moncure AC, Dorer DJ, Stoner MC, Trehan SK, Drummond EC, Abbott WM, Cambria RP. Carotid endarterectomy at the millennium: what interventional therapy must match. Ann Surg. 2004 Sep;240(3):535-44; discussion 544-6. doi: 10.1097/01.sla.0000137142.26925.3c.
Kragsterman B, Parsson H, Lindback J, Bergqvist D, Bjorck M; Swedish Vascular Registry (Swedvasc). Outcomes of carotid endarterectomy for asymptomatic stenosis in Sweden are improving: Results from a population-based registry. J Vasc Surg. 2006 Jul;44(1):79-85. doi: 10.1016/j.jvs.2006.03.003. Epub 2006 May 6.
Dellagrammaticas D, Lewis S, Colam B, Rothwell PM, Warlow CP, Gough MJ; GALA trial collaborators. Carotid endarterectomy in the UK: acceptable risks but unacceptable delays. Clin Med (Lond). 2007 Dec;7(6):589-92. doi: 10.7861/clinmedicine.7-6-589.
Inoue T, Ohwaki K, Tamura A, Tsutsumi K, Saito I, Saito N. Subclinical ischemia verified by somatosensory evoked potential amplitude reduction during carotid endarterectomy: negative effects on cognitive performance. J Neurosurg. 2013 May;118(5):1023-9. doi: 10.3171/2013.1.JNS121668. Epub 2013 Mar 1.
Faries PL, DeRubertis B, Trocciola S, Karwowski J, Kent KC, Chaer RA. Ischemic preconditioning during the use of the PercuSurge occlusion balloon for carotid angioplasty and stenting. Vascular. 2008 Jan-Feb;16(1):1-9. doi: 10.2310/6670.2008.00012.
Steiger HJ, Hanggi D. Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir (Wien). 2007 Jan;149(1):1-10. doi: 10.1007/s00701-006-1057-1. Epub 2006 Dec 14.
Vlasov TD, Korzhevskii DE, Polyakova EA. Ischemic preconditioning of the rat brain as a method of endothelial protection from ischemic/repercussion injury. Neurosci Behav Physiol. 2005 Jul;35(6):567-72. doi: 10.1007/s11055-005-0095-0.
Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res. 2008 Aug 1;79(3):377-86. doi: 10.1093/cvr/cvn114. Epub 2008 May 2.
Gonzalez NR, Connolly M, Dusick JR, Bhakta H, Vespa P. Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery. 2014 Nov;75(5):590-8; discussion 598. doi: 10.1227/NEU.0000000000000514.
Walsh SR, Tang TY, Kullar P, Jenkins DP, Dutka DP, Gaunt ME. Ischaemic preconditioning during cardiac surgery: systematic review and meta-analysis of perioperative outcomes in randomised clinical trials. Eur J Cardiothorac Surg. 2008 Nov;34(5):985-94. doi: 10.1016/j.ejcts.2008.07.062. Epub 2008 Sep 9.
Healy DA, Clarke Moloney M, McHugh SM, Grace PA, Walsh SR. Remote ischaemic preconditioning as a method for perioperative cardioprotection: concepts, applications and future directions. Int J Surg. 2014 Oct;12(10):1093-9. doi: 10.1016/j.ijsu.2014.08.352. Epub 2014 Aug 21.
Le Page S, Bejan-Angoulvant T, Angoulvant D, Prunier F. Remote ischemic conditioning and cardioprotection: a systematic review and meta-analysis of randomized clinical trials. Basic Res Cardiol. 2015 Mar;110(2):11. doi: 10.1007/s00395-015-0467-8. Epub 2015 Feb 5.
Walsh SR, Nouraei SA, Tang TY, Sadat U, Carpenter RH, Gaunt ME. Remote ischemic preconditioning for cerebral and cardiac protection during carotid endarterectomy: results from a pilot randomized clinical trial. Vasc Endovascular Surg. 2010 Aug;44(6):434-9. doi: 10.1177/1538574410369709. Epub 2010 May 18.
Sahlein DH, Heyer EJ, Rampersad A, Winfree CJ, Solomon RA, Benvenisty AI, Quest DO, Du E, Connolly ES. Failure of intraoperative jugular bulb S-100B and neuron-specific enolase sampling to predict cognitive injury after carotid endarterectomy. Neurosurgery. 2003 Dec;53(6):1243-9 discussion 1249-50. doi: 10.1227/01.neu.0000093493.16850.11.
Connolly ES Jr, Winfree CJ, Rampersad A, Sharma R, Mack WJ, Mocco J, Solomon RA, Todd G, Quest DO, Stern Y, Heyer EJ. Serum S100B protein levels are correlated with subclinical neurocognitive declines after carotid endarterectomy. Neurosurgery. 2001 Nov;49(5):1076-82; discussion 1082-3. doi: 10.1097/00006123-200111000-00010.
Rasmussen LS, Christiansen M, Johnsen J, Gronholdt ML, Moller JT. Subtle brain damage cannot be detected by measuring neuron-specific enolase and S-100beta protein after carotid endarterectomy. J Cardiothorac Vasc Anesth. 2000 Apr;14(2):166-70. doi: 10.1016/s1053-0770(00)90012-0.
Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997 Oct;28(10):1956-60. doi: 10.1161/01.str.28.10.1956.
Heyer EJ, Sharma R, Rampersad A, Winfree CJ, Mack WJ, Solomon RA, Todd GJ, McCormick PC, McMurtry JG, Quest DO, Stern Y, Lazar RM, Connolly ES. A controlled prospective study of neuropsychological dysfunction following carotid endarterectomy. Arch Neurol. 2002 Feb;59(2):217-22. doi: 10.1001/archneur.59.2.217.
Mocco J, Wilson DA, Komotar RJ, Zurica J, Mack WJ, Halazun HJ, Hatami R, Sciacca RR, Connolly ES Jr, Heyer EJ. Predictors of neurocognitive decline after carotid endarterectomy. Neurosurgery. 2006 May;58(5):844-50; discussion 844-50. doi: 10.1227/01.NEU.0000209638.62401.7E.
Baracchini C, Mazzalai F, Gruppo M, Lorenzetti R, Ermani M, Ballotta E. Carotid endarterectomy protects elderly patients from cognitive decline: a prospective study. Surgery. 2012 Jan;151(1):99-106. doi: 10.1016/j.surg.2011.06.031. Epub 2011 Sep 22.
Qu L, Feng J, Zou S, Bai J, Hu Z, Guo M, Jing Z. Improved visual, acoustic, and neurocognitive functions after carotid endarterectomy in patients with minor stroke from severe carotid stenosis. J Vasc Surg. 2015 Sep;62(3):635-44.e2. doi: 10.1016/j.jvs.2015.04.401. Epub 2015 Jun 10.
Wilson DA, Mocco J, D'Ambrosio AL, Komotar RJ, Zurica J, Kellner CP, Hahn DK, Connolly ES, Liu X, Imielinska C, Heyer EJ. Post-carotid endarterectomy neurocognitive decline is associated with cerebral blood flow asymmetry on post-operative magnetic resonance perfusion brain scans. Neurol Res. 2008 Apr;30(3):302-6. doi: 10.1179/016164107X230540. Epub 2007 Sep 4.
De Rango P, Caso V, Leys D, Paciaroni M, Lenti M, Cao P. The role of carotid artery stenting and carotid endarterectomy in cognitive performance: a systematic review. Stroke. 2008 Nov;39(11):3116-27. doi: 10.1161/STROKEAHA.108.518357. Epub 2008 Aug 21.
Paraskevas KI, Lazaridis C, Andrews CM, Veith FJ, Giannoukas AD. Comparison of cognitive function after carotid artery stenting versus carotid endarterectomy. Eur J Vasc Endovasc Surg. 2014 Mar;47(3):221-31. doi: 10.1016/j.ejvs.2013.11.006. Epub 2013 Nov 28.
Wang Q, Zhou M, Zhou Y, Ji J, Raithel D, Qiao T. Effects of Carotid Endarterectomy on Cerebral Reperfusion and Cognitive Function in Patients with High Grade Carotid Stenosis: A Perfusion Weighted Magnetic Resonance Imaging Study. Eur J Vasc Endovasc Surg. 2015 Jul;50(1):5-12. doi: 10.1016/j.ejvs.2015.03.032. Epub 2015 Apr 29.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PRO16030479
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.