A Multi-Institutional Pilot Study of Allogeneic Hematopoietic Stem Cell Transplantation for Patients With Malignant Neuro-Epithelial and Other Solid Tumors
NCT ID: NCT02653196
Last Updated: 2017-08-17
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
EARLY_PHASE1
1 participants
INTERVENTIONAL
2015-09-30
2017-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Pilot Study of Non-Myeloablative, HLA-Matched Allogeneic Stem Cell Transplantation for Pediatric Hematopoietic Malignancies
NCT00013533
Donor Stem Cell Transplant After Chemotherapy for the Treatment of Recurrent or Refractory High-Risk Solid Tumors in Pediatric and Adolescent-Young Adults
NCT04530487
G-CSF-Treated Donor Bone Marrow Transplant in Treating Patients With Hematologic Disorders
NCT00253552
Bone Marrow Transplant Using a Reduced Intensity Regimen That is Given in Two Steps
NCT01350258
Donor Stem Cell Transplant Followed By Donor White Blood Cell Infusions in Treating Young Patients With Hematologic Cancer
NCT00301860
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This is a pilot study of a novel HSCT protocol for patients with high-grade and/or recurrent neuro-epithelial and other solid tumors. To determine the feasibility of allogeneic HSCT following thiotepa-based marrow ablative chemotherapy (MAC) for children with high-grade and/or recurrent neuro-epithelial and other solid tumors. The primary end-point for this study is to determine progression-free survival (PFS) at six months post-HSCT. Secondary end-points include: (a) overall survival (OS) at one year (b) transplant related mortality (TRM) at Day +100 (c) engraftment (d) regimen related toxicity: the frequency and severity of acute and chronic graft-versus-host disease (GVHD), sinusoidal obstructive syndrome and infections will be assessed (e) time to immune reconstitution following HSCT. Exploratory Aims include: 1) To assess the feasibility of the Taqman® Low Density Arrays (TLDA) assay as a technology for MRD detection among a subset of patients with high-grade and/or recurrent neuro-epithelial and other solid tumors. Minimal residual disease (MRD) (when applicable) in bone marrow pre- and post-HSCT, will be assessed using TLDA. Currently, for solid malignancies there is no routinely established method to detect minimal residual disease, the first indicator of therapy failure and/or recurrence of disease. 2) In an effort to minimize morbidity related to graft-versus-host disease, alemtuzumab forms an important component of the proposed MAC regimen for recipients of unrelated or related mismatched allogeneic grafts. As an exploratory aim, an alemtuzumab assay will be performed at specified intervals to explore time to drug clearance. This may provide important information regarding lymphodepletion for future trials regarding immunotherapy administered during recovery from HSCT therapy.
The main advantages of the proposed approach will: 1) Overcome the challenges in bone morrow/peripheral blood stem cell (PBSC) collection in patients heavily pre-treated and/or bone/bone marrow infiltration with tumor. 2) Eliminate the risk of graft contamination with tumor cells, and 3) Graft-versus-tumor effect (GVT) to eliminate residual disease after conditioning chemotherapy. The use of allografting with the proposed regimen combines the benefits of high dose chemotherapy and an immune approach to disease therapy.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Allogeneic Hematopoietic Stem Cell Transplant
Matched Unrelated Donor HSCT (minimum 9/10 human leukocyte antigen \[HLA\] match) OR Matched Related Donor HSCT (10/10 HLA match). Conditioning regimen begins 12 days prior to stem cell infusion and includes the following drugs:
Keratinocyte Growth Factor Alemtuzumab Thiotepa Etoposide Melphalan Fludarabine Tacrolimus (Cyclosporine A may be substituted for Tacrolimus) Mycophenolate mofetil
Allogeneic hematopoietic stem cell transplant following thiotepa-based marrow ablative chemotherapy
Allogeneic hematopoietic stem cell transplant (HSCT) following thiotepa-based marrow ablative chemotherapy (MAC) for children with high-grade and/or recurrent neuro-epithelial and other solid tumors.
Keratinocyte Growth Factor
KGF 60 mcg/kg IV: 6 doses
Alemtuzumab
Alemtuzumab 12 mg/m2 IV: 2 doses (not given if matched related donor is 10/10 HLA matched sibling donor)
Thiotepa
Thiotepa 300 mg/m2 IV: 3 doses
Etoposide
Etoposide 100 mg/m2 IV: 3 doses
Fludarabine
Fludarabine 30 mg/m2 IV: 3 doses
Melphalan
Melphalan 70 mg/m2 IV: Day 2 doses
Tacrolimus
Tacrolimus 0.05 mg/kg/day IV (Cyclosporine may be substituted for Tacrolimus): Start Day -2, begin taper on Day +100, discontinue on Day +180
Cyclosporine A
Cyclosporine A dosed as follows: Age ≤ 6 years: 6 mg/kg/day IV in divided doses (e.g. 2 mg/kg every 8 hours) OR Age \> 6 years: 3 mg/kg/day IV in divided doses (1.5 mg/kg every 12 hours): Start Day -2, begin taper on Day +100, discontinue on Day +180
Mycophenolate mofetil
Mycophenolate mofetil 15 mg/kg every 8 hours oral or IV: Start Day 0 (4-6 hours post stem cell infusion) to Day +40, then taper weekly until discontinuation on Day +90
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Allogeneic hematopoietic stem cell transplant following thiotepa-based marrow ablative chemotherapy
Allogeneic hematopoietic stem cell transplant (HSCT) following thiotepa-based marrow ablative chemotherapy (MAC) for children with high-grade and/or recurrent neuro-epithelial and other solid tumors.
Keratinocyte Growth Factor
KGF 60 mcg/kg IV: 6 doses
Alemtuzumab
Alemtuzumab 12 mg/m2 IV: 2 doses (not given if matched related donor is 10/10 HLA matched sibling donor)
Thiotepa
Thiotepa 300 mg/m2 IV: 3 doses
Etoposide
Etoposide 100 mg/m2 IV: 3 doses
Fludarabine
Fludarabine 30 mg/m2 IV: 3 doses
Melphalan
Melphalan 70 mg/m2 IV: Day 2 doses
Tacrolimus
Tacrolimus 0.05 mg/kg/day IV (Cyclosporine may be substituted for Tacrolimus): Start Day -2, begin taper on Day +100, discontinue on Day +180
Cyclosporine A
Cyclosporine A dosed as follows: Age ≤ 6 years: 6 mg/kg/day IV in divided doses (e.g. 2 mg/kg every 8 hours) OR Age \> 6 years: 3 mg/kg/day IV in divided doses (1.5 mg/kg every 12 hours): Start Day -2, begin taper on Day +100, discontinue on Day +180
Mycophenolate mofetil
Mycophenolate mofetil 15 mg/kg every 8 hours oral or IV: Start Day 0 (4-6 hours post stem cell infusion) to Day +40, then taper weekly until discontinuation on Day +90
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients have to be in at least, a chemo-responsive disease status defined as; any disease regression to chemotherapy when compared to its pre-treatment evaluation
* Patients with recurrent (or refractory) chemo-responsive disease or without suitable autologous hematopoietic progenitor cell availability
* Creatinine clearance or glomerular filtration rate (GFR) ≥50 ml/min/1.73m2, and not requiring dialysis
* Diffusing capacity of lung for carbon monoxide, or DLCO, (corrected for hemoglobin) ≥ 50% predicted. If unable to perform pulmonary function tests, then oxygen (O2) saturation ≥ 92% in room air
* Bilirubin ≤3x upper limit of normal (ULN) and alanine transaminase (ALT) and aspartate transaminase (AST) ≤ 5x for age (with the exception of isolated hyperbilirubinemia due to Gilbert's syndrome)
Exclusion Criteria
* End-organ failure that precludes the ability to tolerate the transplant procedure, including conditioning
* Renal failure requiring dialysis
* Congenital heart disease resulting in congestive heart failure
* Ventilatory failure
* HIV infection
* Female of reproductive potential who is pregnant, planning to become pregnant during the study, or is nursing a child
60 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Children's Hospital Los Angeles
OTHER
Nationwide Children's Hospital
OTHER
Montefiore Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Kris M. Mahadeo
Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Kris M Mahadeo, MD,MPH
Role: PRINCIPAL_INVESTIGATOR
The Children's Hospital at Montefiore
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
The Children's Hospital at Montefiore
The Bronx, New York, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O'Leary M, Smith FO, Reaman GH. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010 May 20;28(15):2625-34. doi: 10.1200/JCO.2009.27.0421. Epub 2010 Apr 19.
Chow KH, Gottschalk S. Cellular immunotherapy for high-grade glioma. Immunotherapy. 2011 Mar;3(3):423-34. doi: 10.2217/imt.10.110.
Daniels BP, Cruz-Orengo L, Pasieka TJ, Couraud PO, Romero IA, Weksler B, Cooper JA, Doering TL, Klein RS. Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier. J Neurosci Methods. 2013 Jan 15;212(1):173-9. doi: 10.1016/j.jneumeth.2012.10.001. Epub 2012 Oct 13.
Mitchell DA, Fecci PE, Sampson JH. Immunotherapy of malignant brain tumors. Immunol Rev. 2008 Apr;222:70-100. doi: 10.1111/j.1600-065X.2008.00603.x.
Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer L, LaFond D, Donahue BR, Marymont MH, Muraszko K, Langston J, Sposto R. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006 Sep 1;24(25):4202-8. doi: 10.1200/JCO.2006.06.4980.
Finlay JL, Goldman S, Wong MC, Cairo M, Garvin J, August C, Cohen BH, Stanley P, Zimmerman RA, Bostrom B, Geyer JR, Harris RE, Sanders J, Yates AJ, Boyett JM, Packer RJ. Pilot study of high-dose thiotepa and etoposide with autologous bone marrow rescue in children and young adults with recurrent CNS tumors. The Children's Cancer Group. J Clin Oncol. 1996 Sep;14(9):2495-503. doi: 10.1200/JCO.1996.14.9.2495.
Sung KW, Yoo KH, Cho EJ, Koo HH, Lim DH, Shin HJ, Ahn SD, Ra YS, Choi ES, Ghim TT. High-dose chemotherapy and autologous stem cell rescue in children with newly diagnosed high-risk or relapsed medulloblastoma or supratentorial primitive neuroectodermal tumor. Pediatr Blood Cancer. 2007 Apr;48(4):408-15. doi: 10.1002/pbc.21064.
Ris MD, Packer R, Goldwein J, Jones-Wallace D, Boyett JM. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children's Cancer Group study. J Clin Oncol. 2001 Aug 1;19(15):3470-6. doi: 10.1200/JCO.2001.19.15.3470.
Henon PR, Butturini A, Gale RP. Blood-derived haematopoietic cell transplants: blood to blood? Lancet. 1991 Apr 20;337(8747):961-3. doi: 10.1016/0140-6736(91)91583-g. No abstract available.
Mason WP, Grovas A, Halpern S, Dunkel IJ, Garvin J, Heller G, Rosenblum M, Gardner S, Lyden D, Sands S, Puccetti D, Lindsley K, Merchant TE, O'Malley B, Bayer L, Petriccione MM, Allen J, Finlay JL. Intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. J Clin Oncol. 1998 Jan;16(1):210-21. doi: 10.1200/JCO.1998.16.1.210.
Shih CS, Hale GA, Gronewold L, Tong X, Laningham FH, Gilger EA, Srivastava DK, Kun LE, Gajjar A, Fouladi M. High-dose chemotherapy with autologous stem cell rescue for children with recurrent malignant brain tumors. Cancer. 2008 Mar 15;112(6):1345-53. doi: 10.1002/cncr.23305.
Gururangan S, Krauser J, Watral MA, Driscoll T, Larrier N, Reardon DA, Rich JN, Quinn JA, Vredenburgh JJ, Desjardins A, McLendon RE, Fuchs H, Kurtzberg J, Friedman HS. Efficacy of high-dose chemotherapy or standard salvage therapy in patients with recurrent medulloblastoma. Neuro Oncol. 2008 Oct;10(5):745-51. doi: 10.1215/15228517-2008-044. Epub 2008 Aug 28.
Butturini AM, Jacob M, Aguajo J, Vander-Walde NA, Villablanca J, Jubran R, Erdreich-Epstein A, Marachelian A, Dhall G, Finlay JL. High-dose chemotherapy and autologous hematopoietic progenitor cell rescue in children with recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors: the impact of prior radiotherapy on outcome. Cancer. 2009 Jul 1;115(13):2956-63. doi: 10.1002/cncr.24341.
Lundberg JH, Weissman DE, Beatty PA, Ash RC. Treatment of recurrent metastatic medulloblastoma with intensive chemotherapy and allogeneic bone marrow transplantation. J Neurooncol. 1992 Jun;13(2):151-5. doi: 10.1007/BF00172764.
Secondino S, Pedrazzoli P, Schiavetto I, Basilico V, Bramerio E, Massimino M, Gambacorta M, Siena S. Antitumor effect of allogeneic hematopoietic SCT in metastatic medulloblastoma. Bone Marrow Transplant. 2008 Jul;42(2):131-3. doi: 10.1038/bmt.2008.86. Epub 2008 Mar 31. No abstract available.
Takada S, Ito K, Sakura T, Hatsumi N, Sato M, Saito T, Shiozaki H, Matsushima T, Miyawaki S. Three AML patients with existing or pre-existing intracerebral granulocytic sarcomas who were successfully treated with allogeneic bone marrow transplantations. Bone Marrow Transplant. 1999 Apr;23(7):731-4. doi: 10.1038/sj.bmt.1701635.
Kasow KA, Handgretinger R, Krasin MJ, Pappo AS, Leung W. Possible allogeneic graft-versus-tumor effect in childhood melanoma. J Pediatr Hematol Oncol. 2003 Dec;25(12):982-6. doi: 10.1097/00043426-200312000-00016.
Ueno NT, Cheng YC, Rondon G, Tannir NM, Gajewski JL, Couriel DR, Hosing C, de Lima MJ, Anderlini P, Khouri IF, Booser DJ, Hortobagyi GN, Pagliaro LC, Jonasch E, Giralt SA, Champlin RE. Rapid induction of complete donor chimerism by the use of a reduced-intensity conditioning regimen composed of fludarabine and melphalan in allogeneic stem cell transplantation for metastatic solid tumors. Blood. 2003 Nov 15;102(10):3829-36. doi: 10.1182/blood-2003-04-1022. Epub 2003 Jul 24.
Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002 Mar 15;295(5562):2097-100. doi: 10.1126/science.1068440.
Venstrom JM, Zheng J, Noor N, Danis KE, Yeh AW, Cheung IY, Dupont B, O'Reilly RJ, Cheung NK, Hsu KC. KIR and HLA genotypes are associated with disease progression and survival following autologous hematopoietic stem cell transplantation for high-risk neuroblastoma. Clin Cancer Res. 2009 Dec 1;15(23):7330-4. doi: 10.1158/1078-0432.CCR-09-1720. Epub 2009 Nov 24.
Aoyama Y, Yamamura R, Shima E, Nakamae H, Makita K, Kho G, Ohta K, Yamane T, Takubo T, Hino M. Successful treatment with reduced-intensity stem cell transplantation in a case of relapsed refractory central nervous system lymphoma. Ann Hematol. 2003 Jun;82(6):371-3. doi: 10.1007/s00277-003-0651-z. Epub 2003 Apr 29.
Varadi G, Or R, Kapelushnik J, Naparstek E, Nagler A, Brautbar C, Amar A, Kirschbaum M, Samuel S, Slavin S, Siegal T. Graft-versus-lymphoma effect after allogeneic peripheral blood stem cell transplantation for primary central nervous system lymphoma. Leuk Lymphoma. 1999 Jun;34(1-2):185-90. doi: 10.3109/10428199909083396.
Abdel-Azim H, Kapoor N, Mahadeo KM, Finlay JL. Graft versus tumor effect in the brain of a child with recurrent metastatic medulloblastoma. Pediatr Blood Cancer. 2015 Sep;62(9):1667-9. doi: 10.1002/pbc.25525. Epub 2015 Apr 20.
Ellman L, Katz DH, Green I, Paul WE, Benacerraf B. Mechanisms involved in the antileukemic effect of immunocompetent allogeneic lymphoid cell transfer. Cancer Res. 1972 Jan;32(1):141-8. No abstract available.
Symons HJ, Levy MY, Wang J, Zhou X, Zhou G, Cohen SE, Luznik L, Levitsky HI, Fuchs EJ. The allogeneic effect revisited: exogenous help for endogenous, tumor-specific T cells. Biol Blood Marrow Transplant. 2008 May;14(5):499-509. doi: 10.1016/j.bbmt.2008.02.013.
Maine GN, Mule JJ. Making room for T cells. J Clin Invest. 2002 Jul;110(2):157-9. doi: 10.1172/JCI16166. No abstract available.
Ahmed N, Ratnayake M, Savoldo B, Perlaky L, Dotti G, Wels WS, Bhattacharjee MB, Gilbertson RJ, Shine HD, Weiss HL, Rooney CM, Heslop HE, Gottschalk S. Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res. 2007 Jun 15;67(12):5957-64. doi: 10.1158/0008-5472.CAN-06-4309.
Perez-Martinez A, de Prada Vicente I, Fernandez L, Gonzalez-Vicent M, Valentin J, Martin R, Maxwell H, Sevilla J, Vicario JL, Diaz MA. Natural killer cells can exert a graft-vs-tumor effect in haploidentical stem cell transplantation for pediatric solid tumors. Exp Hematol. 2012 Nov;40(11):882-891.e1. doi: 10.1016/j.exphem.2012.07.004. Epub 2012 Jul 4.
Ash S, Gigi V, Askenasy N, Fabian I, Stein J, Yaniv I. Graft versus neuroblastoma reaction is efficiently elicited by allogeneic bone marrow transplantation through cytolytic activity in the absence of GVHD. Cancer Immunol Immunother. 2009 Dec;58(12):2073-84. doi: 10.1007/s00262-009-0715-6. Epub 2009 May 13.
Lang P, Pfeiffer M, Muller I, Schumm M, Ebinger M, Koscielniak E, Feuchtinger T, Foll J, Martin D, Handgretinger R. Haploidentical stem cell transplantation in patients with pediatric solid tumors: preliminary results of a pilot study and analysis of graft versus tumor effects. Klin Padiatr. 2006 Nov-Dec;218(6):321-6. doi: 10.1055/s-2006-942256.
Jubert C, Wall DA, Grimley M, Champagne MA, Duval M. Engraftment of unrelated cord blood after reduced-intensity conditioning regimen in children with refractory neuroblastoma: a feasibility trial. Bone Marrow Transplant. 2011 Feb;46(2):232-7. doi: 10.1038/bmt.2010.107. Epub 2010 May 3.
Koscielniak E, Gross-Wieltsch U, Treuner J, Winkler P, Klingebiel T, Lang P, Bader P, Niethammer D, Handgretinger R. Graft-versus-Ewing sarcoma effect and long-term remission induced by haploidentical stem-cell transplantation in a patient with relapse of metastatic disease. J Clin Oncol. 2005 Jan 1;23(1):242-4. doi: 10.1200/JCO.2005.05.940. No abstract available.
Burdach S, van Kaick B, Laws HJ, Ahrens S, Haase R, Korholz D, Pape H, Dunst J, Kahn T, Willers R, Engel B, Dirksen U, Kramm C, Nurnberger W, Heyll A, Ladenstein R, Gadner H, Jurgens H, Go el U. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann Oncol. 2000 Nov;11(11):1451-62. doi: 10.1023/a:1026539908115.
Burdach S. Treatment of advanced Ewing tumors by combined radiochemotherapy and engineered cellular transplants. Pediatr Transplant. 2004 Jun;8 Suppl 5:67-82. doi: 10.1111/j.1398-2265.2004.00186.x.
Lucas KG, Schwartz C, Kaplan J. Allogeneic stem cell transplantation in a patient with relapsed Ewing sarcoma. Pediatr Blood Cancer. 2008 Jul;51(1):142-4. doi: 10.1002/pbc.21503.
Capitini CM, Derdak J, Hughes MS, Love CP, Baird K, Mackall CL, Fry TJ. Unusual sites of extraskeletal metastases of Ewing sarcoma after allogeneic hematopoietic stem cell transplantation. J Pediatr Hematol Oncol. 2009 Feb;31(2):142-4. doi: 10.1097/MPH.0b013e31819146e5.
Hosono A, Makimoto A, Kawai A, Takaue Y. Segregated graft-versus-tumor effect between CNS and non-CNS lesions of Ewing's sarcoma family of tumors. Bone Marrow Transplant. 2008 Jun;41(12):1067-8. doi: 10.1038/bmt.2008.26. Epub 2008 Mar 10. No abstract available.
Kido A, Amano I, Honoki K, Tanaka H, Morii T, Fujii H, Yoshitani K, Tanaka Y. Allogeneic and autologous stem cell transplantation in advanced small round cell sarcomas. J Orthop Sci. 2010 Sep;15(5):690-5. doi: 10.1007/s00776-010-1504-y. Epub 2010 Oct 16. No abstract available.
Fagioli F, Berger M, Brach del Prever A, Lioji S, Aglietta M, Ferrari S, Picci P, Madon E. Regression of metastatic osteosarcoma following non-myeloablative stem cell transplantation. A case report. Haematologica. 2003 May;88(5):ECR16.
Goi K, Sugita K, Tezuka T, Sato H, Uno K, Inukai T, Hamada Y, Nakazawa S. A successful case of allogeneic bone marrow transplantation for osteosarcoma with multiple metastases of lung and bone. Bone Marrow Transplant. 2006 Jan;37(1):115-6. doi: 10.1038/sj.bmt.1705209. No abstract available.
Ohta H, Hashii Y, Yoshida H, Kusuki S, Tokimasa S, Yoneda A, Fukuzawa M, Inoue N, Hara J, Kusafuka T, Ozono K. Allogeneic hematopoietic stem cell transplantation against recurrent rhabdomyosarcoma. J Pediatr Hematol Oncol. 2011 Jan;33(1):e35-8. doi: 10.1097/MPH.0b013e3181e7ddc5.
Donker AE, Hoogerbrugge PM, Mavinkurve-Groothuis AM, van de Kar NC, Boetes C, Hulsbergen-van de Kaa CA, Groot-Loonen JJ. Metastatic rhabdomyosarcoma cured after chemotherapy and allogeneic SCT. Bone Marrow Transplant. 2009 Jan;43(2):179-80. doi: 10.1038/bmt.2008.301. Epub 2008 Sep 1. No abstract available.
Baird K, Fry TJ, Steinberg SM, Bishop MR, Fowler DH, Delbrook CP, Humphrey JL, Rager A, Richards K, Wayne AS, Mackall CL. Reduced-intensity allogeneic stem cell transplantation in children and young adults with ultrahigh-risk pediatric sarcomas. Biol Blood Marrow Transplant. 2012 May;18(5):698-707. doi: 10.1016/j.bbmt.2011.08.020. Epub 2011 Sep 5.
Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, Read EJ, Tisdale J, Dunbar C, Linehan WM, Young NS, Barrett AJ. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med. 2000 Sep 14;343(11):750-8. doi: 10.1056/NEJM200009143431101.
Scott M, Lawrance J, Dennis M. Regression of a renal cell carcinoma following allogeneic peripheral blood stem cell transplant for acute myeloid leukaemia: evidence of a graft-versus-tumour effect without significant graft-versus-host disease. Br J Haematol. 2012 Oct;159(1):1. doi: 10.1111/j.1365-2141.2012.09238.x. Epub 2012 Jul 27. No abstract available.
Baek HJ, Han DK, Hwang TJ, Bae SH, Choi YD, Kook H. Long-term graft-versus-tumor effect following reduced intensity hematopoietic stem cell transplantation in a child with metastatic renal cell carcinoma. Pediatr Blood Cancer. 2012 Sep;59(3):583-5. doi: 10.1002/pbc.24074. Epub 2012 Jan 9.
Inaba H, Handgretinger R, Furman W, Hale G, Leung W. Allogeneic graft-versus-hepatoblastoma effect. Pediatr Blood Cancer. 2006 Apr;46(4):501-5. doi: 10.1002/pbc.20404.
Pappo AS, Anderson JR, Crist WM, Wharam MD, Breitfeld PP, Hawkins D, Raney RB, Womer RB, Parham DM, Qualman SJ, Grier HE. Survival after relapse in children and adolescents with rhabdomyosarcoma: A report from the Intergroup Rhabdomyosarcoma Study Group. J Clin Oncol. 1999 Nov;17(11):3487-93. doi: 10.1200/JCO.1999.17.11.3487.
Bowers DC, Gargan L, Weprin BE, Mulne AF, Elterman RD, Munoz L, Giller CA, Winick NJ. Impact of site of tumor recurrence upon survival for children with recurrent or progressive medulloblastoma. J Neurosurg. 2007 Jul;107(1 Suppl):5-10. doi: 10.3171/PED-07/07/005.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2014-3856
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.