Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
107 participants
INTERVENTIONAL
2013-08-31
2016-11-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Cognitive Dysfunction in Parkinson's Disease
NCT02346708
Cognitive Impairment in Parkinson's Disease Categorised in Accordance to Motor Symptoms
NCT00476372
Mid-frontal Delta/Theta and Cognitive Control
NCT06984757
Adaptive Neurostimulation to Restore Sleep in Parkinson's Disease
NCT04620551
Parkinson's Disease and Gamma-transcranial Alternating Current Stimulation
NCT06297538
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
We know that neurons in the brain communicate with each other by firing at certain frequencies. A growing literature shows that high frequency (30-50 Hz) brain activity called gamma activity is particularly important for communication between distant brain areas and is critical to normal cognition.7 Prior studies also show that gamma activity is reduced in PD.8 However, we do not know why gamma activity is reduced in PD or the relationship between changes in gamma activity and cognitive dysfunction. We hypothesize that reductions in gamma activity are a key mechanism underlying cognitive dysfunction in PD and that interventions to increase gamma activity will improve cognition.
To test this hypothesis we propose to use a novel combination of research methods including magnetoencephalography (MEG) and repetitive transcranial magnetic stimulation (rTMS). MEG measures magnetic activity over the scalp to determine brain activity. We will use MEG to determine whether reductions in gamma activity are related to cognitive dysfunction in PD. TMS uses a magnetic coil placed over the scalp to stimulate brain activity. While there is evidence that repetitive TMS (transcranial magnetic stimulation) increases gamma activity and may improve cognition, it has not been studied for this purpose in PD. We will apply repetitive TMS to PD patients to determine whether gamma activity and/or cognitive function may be improved non-invasively.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
BASIC_SCIENCE
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Parkinson's Disease Subjects, (rTMS)
The PD subjects will be randomized, and on a separate day receive a course of either real (rTMS) or sham TMS. Twenty minutes after this treatment subjects will again perform the same working memory task (at 9am to control for fatigue and diurnal effects) while having MEG data recorded
rTMS
TMS: Repetitive TMS will be administered using a 70-mm diameter air-cooled figure-of-8 coil and SuperRapid2 Stimulator (Magstim, Jali Medical US distributors, Woburn, MA). Repetitive pulses will be delivered to the right and left pre-frontal cortex (Brodman area 46) using a frameless stereotactic navigation system and the subject's MRI in Brainsight software. Stimuli will be delivered at 20 Hz at 90% of the subjects resting motor threshold (rMT) for 25 trains of 30 pulses per train, inter-train interval of 30 seconds for a total of 750 pulses per hemisphere. The same TMS parameters as active stimulation but with the coil held at 90° to the scalp to induce similar somatic sensations and noise as in the active group with minimal direct brain effects.
Control Subjects (rTMS)
The control subjects will be randomized, and on a separate day receive a course of either real (rTMS) or sham TMS. Twenty minutes after this treatment subjects will again perform the same working memory task (at 9am to control for fatigue and diurnal effects) while having MEG data recorded
rTMS
TMS: Repetitive TMS will be administered using a 70-mm diameter air-cooled figure-of-8 coil and SuperRapid2 Stimulator (Magstim, Jali Medical US distributors, Woburn, MA). Repetitive pulses will be delivered to the right and left pre-frontal cortex (Brodman area 46) using a frameless stereotactic navigation system and the subject's MRI in Brainsight software. Stimuli will be delivered at 20 Hz at 90% of the subjects resting motor threshold (rMT) for 25 trains of 30 pulses per train, inter-train interval of 30 seconds for a total of 750 pulses per hemisphere. The same TMS parameters as active stimulation but with the coil held at 90° to the scalp to induce similar somatic sensations and noise as in the active group with minimal direct brain effects.
Parkinson's Disease Subjects, (sTMS)
The PD subjects will be randomized, and on a separate day receive a course of either real (rTMS) or sham TMS. Twenty minutes after this treatment subjects will again perform the same working memory task (at 9am to control for fatigue and diurnal effects) while having MEG data recorded
Sham TMS
Sham TMS will be administered with a Magstim sham coil with electrodes attached to mimic the sounds and sensation of real TMS. The site and frequency of stimulation will be identical to the real TMS described above.
Control Subjects (sTMS)
The control subjects will be randomized, and on a separate day receive a course of either real (rTMS) or sham TMS. Twenty minutes after this treatment subjects will again perform the same working memory task (at 9am to control for fatigue and diurnal effects) while having MEG data recorded
Sham TMS
Sham TMS will be administered with a Magstim sham coil with electrodes attached to mimic the sounds and sensation of real TMS. The site and frequency of stimulation will be identical to the real TMS described above.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
rTMS
TMS: Repetitive TMS will be administered using a 70-mm diameter air-cooled figure-of-8 coil and SuperRapid2 Stimulator (Magstim, Jali Medical US distributors, Woburn, MA). Repetitive pulses will be delivered to the right and left pre-frontal cortex (Brodman area 46) using a frameless stereotactic navigation system and the subject's MRI in Brainsight software. Stimuli will be delivered at 20 Hz at 90% of the subjects resting motor threshold (rMT) for 25 trains of 30 pulses per train, inter-train interval of 30 seconds for a total of 750 pulses per hemisphere. The same TMS parameters as active stimulation but with the coil held at 90° to the scalp to induce similar somatic sensations and noise as in the active group with minimal direct brain effects.
Sham TMS
Sham TMS will be administered with a Magstim sham coil with electrodes attached to mimic the sounds and sensation of real TMS. The site and frequency of stimulation will be identical to the real TMS described above.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* PD patients will be of mild to moderate severity based on the Hohn and Yahr scale (score of 3 or less in on medication state) and be on a stable dose of PD medications.
* Clinical severity will also be assessed using the Unified Parkinson Disease Rating Scale.
* We do not anticipate recruitment to be difficult as UCH Movement clinics see over 800 PD patients annually, the majority of whom are stage 3 or less.
* Controls will be approximately matched for age and gender as a group and recruited through clinic (spouses) and advertisements in the community.
Exclusion Criteria
* Dementia (Mini Mental State Examination34 \< 26 or Frontal Assessment Battery35 \< 14)
* Other neurological or psychiatric illness
* Significant history of head injury, significant systemic medical diseases (e.g. liver failure, kidney failure, poorly controlled diabetes)
* Deep Brain Stimulation (DBS)
* Cognitive enhancing medications (e.g. stimulants or acetylcholinesterase inhibitors) or contraindications to either TMS or MRI (pregnancy, pacemaker, unstable cardiac disease, skull lesion, claustrophobia, history of epilepsy or on medications known to lower seizure threshold).
45 Years
90 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Colorado, Denver
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Benzi Kluger, MD
Role: PRINCIPAL_INVESTIGATOR
University of Colorado, Denver
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
UC Denver Building 534
Aurora, Colorado, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
10-0771
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.