Tailor-CRT: Better Application of Cardiac Resynchronization Therapy

NCT ID: NCT02326493

Last Updated: 2017-02-23

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

28 participants

Study Classification

INTERVENTIONAL

Study Start Date

2014-11-30

Study Completion Date

2016-11-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Approximately one third of patients treated with cardiac resynchronization therapy (CRT) do not derive any clinical benefit. CRT response can be improved by tailoring LV lead placement and programming of atrio-ventricular (AV) and inter-ventricular (VV) stimulation intervals to the individual patient. However, the best strategy to optimize lead positioning and device programming still remains to be established. Earlier work in our research group suggests that the vector cardiogram (VCG) can be used to determine the optimal LV lead position and AV- and VV-intervals, and pilot studies showed the feasibility to derive a VCG-like signal (D-VCG) from the implanted pacing electrodes. Other studies have suggested that the best position for the LV electrode is the region of latest electrical activation. The region of latest electrical activation can be identified by measuring the electrical delay on the LV lead (LVLED) during implantation. The objective of this study is to investigate whether D-VCG can be used to determine the optimal AV- and VV-interval and whether VCG and LVLED can be used to determine the optimal LV lead position.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Cardiac resynchronization therapy (CRT) is an established treatment for heart failure (HF) patients with severe left ventricular (LV) systolic impairment and delayed electrical impulse conduction through the ventricles, such as left bundle-branch block (LBBB). Since initial approval of the therapy over 10 years ago, there have been hundreds of thousands of implants worldwide. In The Netherlands, currently more than 2000 CRT devices are implanted each year. In a heart with LBBB, electrical activation of the lateral LV free wall is delayed, which leads to dyssynchronous and inefficient LV mechanical contraction and compromised LV pump function. The positive impact of CRT on LV pump function is attributed to paced pre-excitation of the delayed activated lateral LV wall. CRT is most commonly applied by pacing the right ventricle (RV) and LV lateral wall (almost) simultaneously. This corrects the abnormal LV electrical activation and resynchronizes LV mechanical contraction, which in turn results in improved LV pump function.

Despite the striking effectiveness of CRT, 30-50% of apparently suitable patients show little or no improvement. Previous studies have shown that the response to CRT can be improved by tailoring LV lead placement and programming of atrioventricular (AV) and inter-ventricular (VV) stimulation intervals to the individual patient. In clinical practice, echocardiographic techniques are the most widely employed for CRT optimization. However these techniques are subject to large measurement errors and inter- and intra-observer variability. A more accurate technique is invasive assessment of acute hemodynamic response to CRT, with the most widely used invasive hemodynamic parameter being the maximum rate of LV systolic pressure rise (LVdP/dtmax). However, the invasive and time-consuming nature of this approach limits its use in clinical practice. Thus, the best strategy to optimize lead positioning and device programming still remains to be established.

Earlier work in our research group suggests that the vectorcardiogram (VCG) can be used to determine the optimal LV lead position and AV- and VV-intervals, and pilot studies showed the feasibility to derive a VCG-like signal (D-VCG) from the implanted pacing electrodes. Other studies have suggested that the best position for the LV electrode is the region of latest electrical activation. The region of latest electrical activation can be identified by measuring the electrical delay on the LV lead (LVLED) during implantation. Validation of these techniques for tailoring LV lead positioning and AV- and VV- stimulation intervals to the individual patient, will provide non-invasive and easy methods to optimize CRT application and improve response rate.

The objective of this study is to investigate whether D-VCG can be used to determine the optimal AV- and VV-interval and whether VCG and LVLED can be used to determine the optimal LV lead position. Validation of these techniques for tailoring LV lead positioning and AV- and VV- stimulation intervals to the individual patient, will provide non-invasive and easy methods to optimize CRT application and improve response rate.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Heart Failure Left Bundle-Branch Block

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

CRT implantation

Patients who have a class I indication for cardiac resynchronization therapy according to current international guidelines

Group Type EXPERIMENTAL

Cardiac Resynchronization Therapy

Intervention Type DEVICE

A CRT device will be implanted while performing extra hemodynamic (LV dP/dtmax) and electrical (LVLED, VCG, and D-VCG) measurements. Devices and leads from various vendors will be used.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Cardiac Resynchronization Therapy

A CRT device will be implanted while performing extra hemodynamic (LV dP/dtmax) and electrical (LVLED, VCG, and D-VCG) measurements. Devices and leads from various vendors will be used.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Chronic heart failure with NYHA functional class II-IV
* Left ventricular ejection fraction (LVEF) \< 35%
* Left bundle-branch block (LBBB) with QRS duration \> 120 ms
* In sinus rhythm

Exclusion Criteria

* Atrial fibrillation
* ≥4 premature ventricular complexes on standard 12-lead ECG
* Age \<18 years or \> 80 years
* Incapable of giving informed consent
* Moderate to severe aortic valve stenosis
Minimum Eligible Age

18 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University Medical Center Groningen

OTHER

Sponsor Role collaborator

Medtronic

INDUSTRY

Sponsor Role collaborator

Maastricht University Medical Center

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Kevin Vernooy, MD, PhD

Role: PRINCIPAL_INVESTIGATOR

Maastricht University Medical Centre

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Maastricht University Medical Centre

Maastricht, Limburg, Netherlands

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Netherlands

References

Explore related publications, articles, or registry entries linked to this study.

Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L; Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005 Apr 14;352(15):1539-49. doi: 10.1056/NEJMoa050496. Epub 2005 Mar 7.

Reference Type BACKGROUND
PMID: 15753115 (View on PubMed)

Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, Estes NA 3rd, Foster E, Greenberg H, Higgins SL, Pfeffer MA, Solomon SD, Wilber D, Zareba W; MADIT-CRT Trial Investigators. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009 Oct 1;361(14):1329-38. doi: 10.1056/NEJMoa0906431. Epub 2009 Sep 1.

Reference Type BACKGROUND
PMID: 19723701 (View on PubMed)

European Heart Rhythm Association; European Society of Cardiology; Heart Rhythm Society; Heart Failure Society of America; American Society of Echocardiography; American Heart Association; European Association of Echocardiography; Heart Failure Association; Daubert JC, Saxon L, Adamson PB, Auricchio A, Berger RD, Beshai JF, Breithard O, Brignole M, Cleland J, Delurgio DB, Dickstein K, Exner DV, Gold M, Grimm RA, Hayes DL, Israel C, Leclercq C, Linde C, Lindenfeld J, Merkely B, Mont L, Murgatroyd F, Prinzen F, Saba SF, Shinbane JS, Singh J, Tang AS, Vardas PE, Wilkoff BL, Zamorano JL. 2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Heart Rhythm. 2012 Sep;9(9):1524-76. doi: 10.1016/j.hrthm.2012.07.025. No abstract available.

Reference Type BACKGROUND
PMID: 22939223 (View on PubMed)

Auricchio A, Prinzen FW. Non-responders to cardiac resynchronization therapy: the magnitude of the problem and the issues. Circ J. 2011;75(3):521-7. doi: 10.1253/circj.cj-10-1268. Epub 2011 Feb 11.

Reference Type BACKGROUND
PMID: 21325727 (View on PubMed)

Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, Garrigue S, Kappenberger L, Haywood GA, Santini M, Bailleul C, Daubert JC; Multisite Stimulation in Cardiomyopathies (MUSTIC) Study Investigators. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med. 2001 Mar 22;344(12):873-80. doi: 10.1056/NEJM200103223441202.

Reference Type BACKGROUND
PMID: 11259720 (View on PubMed)

Auricchio A, Stellbrink C, Block M, Sack S, Vogt J, Bakker P, Klein H, Kramer A, Ding J, Salo R, Tockman B, Pochet T, Spinelli J. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for Congestive Heart Failure Study Group. The Guidant Congestive Heart Failure Research Group. Circulation. 1999 Jun 15;99(23):2993-3001. doi: 10.1161/01.cir.99.23.2993.

Reference Type BACKGROUND
PMID: 10368116 (View on PubMed)

Auricchio A, Ding J, Spinelli JC, Kramer AP, Salo RW, Hoersch W, KenKnight BH, Klein HU. Cardiac resynchronization therapy restores optimal atrioventricular mechanical timing in heart failure patients with ventricular conduction delay. J Am Coll Cardiol. 2002 Apr 3;39(7):1163-9. doi: 10.1016/s0735-1097(02)01727-8.

Reference Type BACKGROUND
PMID: 11923041 (View on PubMed)

Butter C, Auricchio A, Stellbrink C, Fleck E, Ding J, Yu Y, Huvelle E, Spinelli J; Pacing Therapy for Chronic Heart Failure II Study Group. Effect of resynchronization therapy stimulation site on the systolic function of heart failure patients. Circulation. 2001 Dec 18;104(25):3026-9. doi: 10.1161/hc5001.102229.

Reference Type BACKGROUND
PMID: 11748094 (View on PubMed)

Sawhney NS, Waggoner AD, Garhwal S, Chawla MK, Osborn J, Faddis MN. Randomized prospective trial of atrioventricular delay programming for cardiac resynchronization therapy. Heart Rhythm. 2004 Nov;1(5):562-7. doi: 10.1016/j.hrthm.2004.07.006.

Reference Type BACKGROUND
PMID: 15851220 (View on PubMed)

Morales MA, Startari U, Panchetti L, Rossi A, Piacenti M. Atrioventricular delay optimization by doppler-derived left ventricular dP/dt improves 6-month outcome of resynchronized patients. Pacing Clin Electrophysiol. 2006 Jun;29(6):564-8. doi: 10.1111/j.1540-8159.2006.00402.x.

Reference Type BACKGROUND
PMID: 16784420 (View on PubMed)

Hardt SE, Yazdi SH, Bauer A, Filusch A, Korosoglou G, Hansen A, Bekeredjian R, Ehlermann P, Remppis A, Katus HA, Kuecherer HF. Immediate and chronic effects of AV-delay optimization in patients with cardiac resynchronization therapy. Int J Cardiol. 2007 Feb 14;115(3):318-25. doi: 10.1016/j.ijcard.2006.03.015. Epub 2006 Aug 7.

Reference Type BACKGROUND
PMID: 16891011 (View on PubMed)

Delnoy PP, Ottervanger JP, Luttikhuis HO, Vos DH, Elvan A, Ramdat Misier AR, Beukema WP, Steendijk P, van Hemel NM. Pressure-volume loop analysis during implantation of biventricular pacemaker/cardiac resynchronization therapy device to optimize right and left ventricular pacing sites. Eur Heart J. 2009 Apr;30(7):797-804. doi: 10.1093/eurheartj/ehp011. Epub 2009 Feb 7.

Reference Type BACKGROUND
PMID: 19202156 (View on PubMed)

Derval N, Steendijk P, Gula LJ, Deplagne A, Laborderie J, Sacher F, Knecht S, Wright M, Nault I, Ploux S, Ritter P, Bordachar P, Lafitte S, Reant P, Klein GJ, Narayan SM, Garrigue S, Hocini M, Haissaguerre M, Clementy J, Jais P. Optimizing hemodynamics in heart failure patients by systematic screening of left ventricular pacing sites: the lateral left ventricular wall and the coronary sinus are rarely the best sites. J Am Coll Cardiol. 2010 Feb 9;55(6):566-75. doi: 10.1016/j.jacc.2009.08.045. Epub 2009 Nov 20.

Reference Type BACKGROUND
PMID: 19931364 (View on PubMed)

van Campen CM, Visser FC, de Cock CC, Vos HS, Kamp O, Visser CA. Comparison of the haemodynamics of different pacing sites in patients undergoing resynchronisation treatment: need for individualisation of lead localisation. Heart. 2006 Dec;92(12):1795-800. doi: 10.1136/hrt.2004.050435. Epub 2006 Jun 27.

Reference Type BACKGROUND
PMID: 16803940 (View on PubMed)

Cuoco FA, Gold MR. Optimization of cardiac resynchronization therapy: importance of programmed parameters. J Cardiovasc Electrophysiol. 2012 Jan;23(1):110-8. doi: 10.1111/j.1540-8167.2011.02235.x. Epub 2011 Dec 21.

Reference Type BACKGROUND
PMID: 22188487 (View on PubMed)

van Deursen CJ, Strik M, Rademakers LM, van Hunnik A, Kuiper M, Wecke L, Crijns HJ, Vernooy K, Prinzen FW. Vectorcardiography as a tool for easy optimization of cardiac resynchronization therapy in canine left bundle branch block hearts. Circ Arrhythm Electrophysiol. 2012 Jun 1;5(3):544-52. doi: 10.1161/CIRCEP.111.966358. Epub 2012 Apr 24.

Reference Type BACKGROUND
PMID: 22534251 (View on PubMed)

Gold MR, Birgersdotter-Green U, Singh JP, Ellenbogen KA, Yu Y, Meyer TE, Seth M, Tchou PJ. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur Heart J. 2011 Oct;32(20):2516-24. doi: 10.1093/eurheartj/ehr329. Epub 2011 Aug 29.

Reference Type BACKGROUND
PMID: 21875862 (View on PubMed)

Kandala J, Upadhyay GA, Altman RK, Parks KA, Orencole M, Mela T, Kevin Heist E, Singh JP. QRS morphology, left ventricular lead location, and clinical outcome in patients receiving cardiac resynchronization therapy. Eur Heart J. 2013 Aug;34(29):2252-62. doi: 10.1093/eurheartj/eht123. Epub 2013 Apr 9.

Reference Type BACKGROUND
PMID: 23571836 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

METC 13-2-046

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

AdaptResponse Clinical Trial
NCT02205359 COMPLETED NA
Personalized CRT - PSR
NCT03723265 COMPLETED