Intraoperative Analysis of Reward and Impulsivity in the Basal Ganglia

NCT ID: NCT02319694

Last Updated: 2018-06-01

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

36 participants

Study Classification

OBSERVATIONAL

Study Start Date

2013-07-31

Study Completion Date

2017-02-27

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This project studies the impulsive side effects of common treatments for Parkinson's Disease. By learning how parts of the brain involved in Parkinson's encode information related to reward and motivation, the investigators will better understand the reasons why Parkinson's patients often suffer from compulsive gambling, hypersexuality, and repetitive tinkering ("punding"). These results may lead to the design of better methods of deep brain stimulation (DBS) that minimize the behavioral side effects of Parkinson's treatment.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

While the typical treatments for Parkinson's disease (PD), dopaminergic drugs and deep brain stimulation (DBS), are proven to be effective in mitigating the motor deficits associated with the disease, these same methods also give rise to behavioral side effects including compulsive gambling, hypersexuality, and complex, purposeless stereotyped behavior ("punding"). And while much work has investigated the underlying patterns of neural activity giving rise to tremor, rigidity, and other motor effects of D, little is known about the neural genesis of impulsive side effects in humans. The investigators propose to characterize the patterns of neural activity underlying these failures of impulse control in an actual PD patient population undergoing surgery for the implantation of DBS electrodes. Such procedures offer a unique opportunity to collect data at the single neuron level in humans, since surgeons rely on intraoperative electrophysiology to identify the anatomical boundaries of the subthalamic nucleus (STN), the typical target of DBS in PD. Using multi-channel Ad-Tech microwire arrays, the investigators will simultaneously record multiple channels of single unit activity (both spikes and field potentials ) in STN and nearby structures while subjects perform cognitive tasks with validated links to impulsivity in human populations. In the balloon analogue risk task (BART) participants must balance risk and reward as they decide when to stop inflating a computerized balloon whose point value and risk of popping both grow with size. In the stop signal reaction task (SSRT), participants must respond as quickly as possible when a "go" cue appears, but countermand this response when a "stop" tone is played. At the neural level, the BART allows us to elucidate correlates of risk, outcome (both rewarding and aversive), and anticipation, while the SSRT, a well-studied model of impulsivity in both animal models and humans with strong links to computational models, will allow us to determine not only single unit but network-level patterns of activity underlying failures in impulse control. Through these experiments, as well as computational modeling, the investigators will characterize neural correlates of impulsivity in PD patients that will allow for the design of DBS protocols that mitigate impulsive side effects. The R21 mechanism will be used to further develop and streamline the process of multichannel recording and cognitive testing in the intraoperative setting and validate the hypothesized link between single neuron activity and models of behavior in the stop signal task.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Parkinson's Disease

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

OTHER

Study Time Perspective

OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* scheduled for implantation of deep brain stimulation device
* appropriate for awake surgery
* interest in participation

Exclusion Criteria

* none
Minimum Eligible Age

21 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute of Neurological Disorders and Stroke (NINDS)

NIH

Sponsor Role collaborator

Duke University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

R21NS084176

Identifier Type: NIH

Identifier Source: secondary_id

View Link

Pro00045557

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.