Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
15 participants
INTERVENTIONAL
2014-10-31
2015-10-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
This study will investigate the effectiveness of this device in high school athletes playing a collision or contact sport such as football, hockey, or lacrosse. The high risk sports which utilize helmets during competition will allow for measurements systems to be embedded in the headgear and will not affect play or fit of equipment. Athletes participating in this study will be enrolled into one of two groups 1) device wearing or 2) non-device wearing. By the nature of the sports selected, it is likely this pilot study will primarily include males, however if any female meets inclusion criteria on the team selected they will be included in this pilot investigation. The helmets of all participants will be outfitted with an accelerometer which will measure the magnitude of every impact to the head sustained by the athlete. Effectiveness of the device will be determined by brain imaging during the pre-season, midseason, and end of season time points. A subset of athletes who report a diagnosed concussion will also receive additional brain imaging within the week following the diagnosed concussive event.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Protection Against Potential Brain Injury During Competitive Football
NCT02696200
Brain Dynamics in Response to Jugular Vein Compression
NCT03236389
Concussion Prevention in Female Soccer Athletes
NCT03014492
Usability and Tolerability of Novel Protection Device Against Potential Brain Injury During Competitive Sport
NCT03318822
Innovative Concussion Prevention Device
NCT02901028
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
According to NASA, "The oscillation of a fluid caused by an external force, called sloshing, occurs in moving vehicles containing liquid masses, such as trucks, etc." This oscillation occurs when a vessel is only partially filled. Similarly, the brain faces slosh peril during external force impartation. Slosh permits external energies to be absorbed by the contents of a partially filled vessel or container by means of inelastic collisions. Tissues of differing densities can decelerate at different rates creating shear and cavitation. If the collisions between objects or molecules are elastic, the transfer of energies to those objects diminishes, minimizing the energies imparted by slosh.
Woodpeckers, head ramming sheep and all mammals (including mankind) have small, little known and misunderstood muscles in their necks called the omohyoid muscles. Highly G-tolerant creatures of the forest have utilized these muscles to gently restrict outflow of the internal jugular veins thereby "taking up" the excess compliance of the cranial space and ultimately protecting themselves from TBI like tiny "airbags" in a motor vehicle. Rat studies by Smith et al. have demonstrated that the investigators can easily and safely facilitate this muscle's actions by a well-engineered gentle compression over those muscles.
The medical Queckenstedt Maneuver devised to detect spinal cord compression, gently places pressure over the external jugular veins to increase cerebral spinal volume and pressure. In this maneuver, the veins are compressed while a lumber puncture monitors the intracranial pressure. "Normally, the pressure rise to the higher 'plateau' level occurs instantly upon jugular compression to fall again equally fast upon release of the compression"(Gilland 1969). This incredibly simple principle can be employed to protect soldiers and athletes from TBI by safely, and reversibly, increasing intracranial volume and pressure. The neck collar device is made of hytrel (plastic), silicone, metal and fabric that is fitted to the neck providing comfortable and precise jugular compression that potentially mitigates cerebral slosh (Figure 1).
Although the skull, blood, and brain are "almost incompressible," the vasculature tree of the cerebrum is quite reactive and compressible. As volume is added to the cranium, eventually the compensatory reserve volume is surpassed and the intracranial pressure increases slightly. Increasing cerebral blood volume by just 1-3% safely and reversibly reduces compliance of the cerebral vascular tree and diminishes absorption of slosh energies. Jugular compression increases cerebral blood volume almost instantaneously. As mentioned, this degree of increase has significantly mitigated slosh and TBI in laboratory animals and mimics the highly concussion resistant wild animals that are able to reflexively increase cerebral blood volume through jugular compression.
A landmark article, published in the Journal of Neurosurgery, used a standard acceleration-deceleration impact laboratory model of mild TBI. The study showed a successful and marked reduction of axonal injury following Internal Jugular Vein (IJV) compression as indicated by immunohistochemical staining of Amyloid Precursor Proteins (APP) (Smith 2012; Turner 2012). It is argued that IJV compression reduces slosh-mediated brain injury by increasing intracranial blood volume and reducing the compliance and potential for brain movement within the confines of the skull. The potential for such technique to mitigate both linear and rotational brain injury in humans by "internal protection" represents the most novel approach to mitigating TBI.
Summary of Prior Work A. Safety testing in athletes has been approved by the local IRB and was completed in the Cincinnati Children's Hospital Human Performance Laboratory (Study ID: 2013-2240; PI: Gregory Myer). Evaluation of monitored vital signs, biomechanics, cardiorespiratory capacity, postural control, dynamic stabilization, reactive index, concentration and cognition, memory, strength and power in a population of athletes showed no statistically significant adverse effect of wearing a mild jugular vein compressive neck collar compared to a sham arm band.(Myer 2013) Cumulatively, the pre and post safety measures indicate that neurologic parameters of executive function, eye hand coordination, balance, memory and reaction times were unchanged following two hours of physical testing wearing the collar prototype. Acceptance of the compression collar was not different in physiological biomarker response to non-collared condition during maximal oxygen uptake and maximum effort power testing.(Myer 2013) B. Magnetic Resonance Elastography was established at CCHMC in collaboration with The Mayo Clinic to support studies. Under jugular vein compression with the collar, all subjects tolerated the procedure without any untoward effects. The preliminary studies of dynamic shear strain showed no consistent pattern of wave propagation and elasticity, placed upon the vascular and cranial tissues. Analysis of these data continues.
C. Four hundred and ten (410) subjects (ages 12 to 68 years of age) were studied with MEPA (middle ear power analysis) with and without the compression collar and no complaints or untoward effects were noted and no decline in the auditory perception was recorded. The expected changes of reduced Acoustic Reflectance of the inner ear and middle ear (indicative of reduced compliance) were noted only in subgroup analysis of those with jugular vein compression. The results of this study indicate that the neck compression collar prototype may have the potential to safely reduce energy impartation into cranial structures (i.e. the inner ear), however further work is needed with advanced collar designs to establish this effect.
D. fMRI and CO2 reactivity was performed on twelve adults before and after application of jugular vein compression. Results comparing before and after jugular vein compressions (with the collar) yielded no alterations in O2 uptake or glucose metabolism to any portion of the brain.(Fisher 2013)
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Q collar
subjects wearing the q collar
Q collar
collar worn around neck
Control
subjects not wearing the Q collar
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Q collar
collar worn around neck
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Able to provide written consent
* Must be 14 years or older and a participant on a competitive and organized sports program
* Neck circumference of 15 ½ - 16 ½ inches
Exclusion Criteria
* History of neurological deficits, previous cerebral infarction, or severe head trauma
* Medical contraindications to restriction of venous outflow via the internal jugular veins (known increased intracerebral pressure, metabolic acidosis or alkalosis)
* Glaucoma (Narrow Angle or Normal Tension)
* Hydrocephalus
* Recent penetrating brain trauma (within 6 months)
* Known carotid hypersensitivity
* Known increased intracranial pressure
* Central vein thrombosis
* Any known airway obstruction
* Any known seizure disorder
14 Years
19 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Children's Hospital Medical Center, Cincinnati
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Gregory D Myer, PhD
Role: PRINCIPAL_INVESTIGATOR
Children's Hospital Medical Center, Cincinnati
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Cincinnati Children's Hospital
Cincinnati, Ohio, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2014-5009
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.