Hypoxia Imaging -Guided Radiotherapy of Nasopharyngeal Carcinoma

NCT ID: NCT02089204

Last Updated: 2014-03-17

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

300 participants

Study Classification

OBSERVATIONAL

Study Start Date

2010-06-30

Study Completion Date

2015-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Nasopharyngeal carcinoma (NPC) differs from other head and neck malignancies in terms of its epidemiology, pathology, and treatment outcome . It is endemic in China and is one of the major public health problems. Concurrent radiotherapy and chemotherapy is the primary treatment for patients with NPC. Despite such aggressive treatment, many patients with locally advanced NPC still develop locally recurrent disease. Since local control is directly related to patient morbidity and mortality in NPC, there is a strong need to identify methods to further improve treatment outcome for NPC.

One strategy to improve local control is to escalate the dose of radiotherapy. This is because local control has been shown to be directly related to the radiotherapy dose. Several different techniques, including brachytherapy, stereotactic radiosurgery, and dose-painting intensity modulated radiotherapy (IMRT), have been used to increase radiotherapy dose. However, due to the large number of critical anatomic structures near the nasopharynx, dose-escalation in NPC can also lead to increased toxicities. One technique that has achieved dose-escalation with minimal increase in toxicity is simultaneous modulated accelerated radiation therapy (SMART). The main challenge for such treatment is to identify the appropriate tumor volume to receive the high-dose radiotherapy. Conventional dose-escalation is conducted using computed tomography (CT) to identify the gross tumor volume (GTV). However, recent progress with F-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in treatment planning allows more accurate tumor volume delineation. We hypothesize that the use of PET/CT in treatment planning can improve dose-escalation radiotherapy for NPC which in turn can improve therapeutic efficacy while reducing toxicity. PET/CT imaging of tissue hypoxia using \[F-18\]fluoromisonidazole (FMISO), the most widely used nitroimidazole imaging agent.Given that there has been no clinical trials directly comparing conventional chemoradiotherapy to CT-guided dose-escalation chemoradiotherapy or PET/CT guided dose-escalation chemoradiotherapy in locally advanced NPC.This was a study to evaluate the role of FMISO-PET hypoxia imaging for predicting survival in NPC,our study aims to compare the local control, overall survival and toxicities of the three treatment regimens..

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Study Design Patients with previously untreated Stages III\~IVA (AJCC 6th Edition) of locally advanced NPC, Karnofsky performance status≥70, and good bone marrow, liver and kidney functions (white blood count ≥ 4.0×109/L, platelets ≥ 100×109/L, albumin ≥30 g/L , creatinine ≤100μmol/L) were enrolled on this study. Patients younger than 18, those with a prior (within 5 years) or synchronous malignancy were excluded. Pretreatment evaluations consisted of a history and physical, dental and laboratory studies. The clinical stage was determined based on all information provided by examinations including contrast enhanced CT and magnetic resonance imaging (MRI) of head and neck, Chest X-ray, liver sonography, bone scan, and 18F-FDG-PET. All tumors were histologically confirmed except those of distant sites.

Patients who met the eligibility criteria were randomized 1:1:1 into the three treatment arms: conventional chemoradiotherapy (group A), FDG PET/CT -guided dose escalation chemoradiotherapy (group B) and FMISO PET/CT -guided dose escalation chemoradiotherapy (group C). All patients were given concurrent chemoradiotherapy within two weeks of diagnosis. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) IMRT technique in the dose-escalation treatment arms. Concurrent chemotherapy consisted of cisplatin (20mg / m2 ,iv, d1- 4) and docetaxel (75mg / m2, d1, d8) administered on the 1st and 4th week of treatment. All patients received adjuvant chemotherapy that ranged from 2 to 4 cycles.

Follow-up and statistical analysis Planned patient assessment included physical examination and fiberoptic nasopharyngoscopy every 3 months to 3 years starting at 4 weeks post-treatment. A contrast-enhanced CT or MRI of the head and neck is also obtained at each follow up. After 3 years, the patients were followed yearly thereafter. Suspected recurrences were histologically proven. To assess for distant metastasis, CT of the chest and bone scan were obtained every half a year. During every follow-up visit, treatment toxicity were assessed. Radiotherapy-related toxicities were graded according to the Acute and the Late Radiation Morbidity Scoring Criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Chemotherapy-related toxicities (except nausea or alopecia) were graded by the criteria of the WHO.

All events were measured from the date of randomization. OS was defined as the time from the date of radiotherapy to death or the latest date known to be alive. Durations were calculated from the end of treatment. The Kaplan-Meier method was used to calculate the actuarial rates of local control, DFS and OS. The χ2 test was used for comparing incidence rates and categorical variables and Student's t-test was used for comparing the means of continuous variables.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Nasopharyngeal Carcinoma

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

FMISO-PET/CT

18F-MISO PET/CT -guided dose escalation chemoradiotherapy. All patients were given concurrent chemoradiotherapy within two weeks of diagnosis. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) IMRT technique in the dose-escalation treatment arms. Concurrent chemotherapy consisted of cisplatin (20mg / m2 ,iv, d1- 4) and docetaxel (75mg / m2, d1, d8) administered on the 1st and 4th week of treatment. All patients received adjuvant chemotherapy that ranged from 2 to 4 cycles.

FMISO-PET/CT

Intervention Type RADIATION

Fluorine-18-labeled fluoromisonidazole PET/CT-guided dose escalation chemoradiotherapy (group C). Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) technique in the dose-escalation treatment arms. Patients received concurrent and adjuvant chemotherapy.

contrast-enhanced CT

Intervention Type RADIATION

contrast-enhanced CT -guided dose escalation chemoradiotherapy. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) technique in the dose-escalation treatment arms. Patients received concurrent and adjuvant chemotherapy

FDG-PET/CT

18F-FDG PET/CT -guided dose escalation chemoradiotherapy. All patients were given concurrent chemoradiotherapy within two weeks of diagnosis. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) IMRT technique in the dose-escalation treatment arms. Concurrent chemotherapy consisted of cisplatin (20mg / m2 ,iv, d1- 4) and docetaxel (75mg / m2, d1, d8) administered on the 1st and 4th week of treatment. All patients received adjuvant chemotherapy that ranged from 2 to 4 cycles.

FDG-PET/CT

Intervention Type RADIATION

18F-FDG PET/CT -guided dose escalation chemoradiotherapy. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) technique in the dose-escalation treatment arms. Patients received concurrent and adjuvant chemotherapy.

contrast-enhanced CT

Intervention Type RADIATION

contrast-enhanced CT -guided dose escalation chemoradiotherapy. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) technique in the dose-escalation treatment arms. Patients received concurrent and adjuvant chemotherapy

contrast-enhanced CT

contrast-enhanced CT -guided dose escalation chemoradiotherapy . GTVs were delineated based on fusing diagnostic CT images with simulation CT images.All patients were given concurrent chemoradiotherapy within two weeks of diagnosis. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) IMRT technique in the dose-escalation treatment arms. Concurrent chemotherapy consisted of cisplatin (20mg / m2 ,iv, d1- 4) and docetaxel (75mg / m2, d1, d8) administered on the 1st and 4th week of treatment. All patients received adjuvant chemotherapy that ranged from 2 to 4 cycles.

contrast-enhanced CT

Intervention Type RADIATION

contrast-enhanced CT -guided dose escalation chemoradiotherapy. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) technique in the dose-escalation treatment arms. Patients received concurrent and adjuvant chemotherapy

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

FMISO-PET/CT

Fluorine-18-labeled fluoromisonidazole PET/CT-guided dose escalation chemoradiotherapy (group C). Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) technique in the dose-escalation treatment arms. Patients received concurrent and adjuvant chemotherapy.

Intervention Type RADIATION

FDG-PET/CT

18F-FDG PET/CT -guided dose escalation chemoradiotherapy. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) technique in the dose-escalation treatment arms. Patients received concurrent and adjuvant chemotherapy.

Intervention Type RADIATION

contrast-enhanced CT

contrast-enhanced CT -guided dose escalation chemoradiotherapy. Radiotherapy was delivered using the simultaneous modulated accelerated radiation therapy (SMART) technique in the dose-escalation treatment arms. Patients received concurrent and adjuvant chemotherapy

Intervention Type RADIATION

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

fluorine-18-labeled fluoromisonidazole fluorine-18 deoxyglucose

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* histologically confirmed NPC by biopsy,
* no evidence of distant metastasis,
* no previous treatment for NPC,
* Stages III\~IVA (AJCC 7th Edition) of locally advanced ,
* adequate liver function (albumin ≥30 g/L),
* adequate renal function (creatinine ≤100μmol/L) ,
* adequate bone marrow function(white blood count ≥ 4.0×109/L, platelets ≥ 100×109/L),
* Karnofsky performance status≥70,

Exclusion Criteria

* Patients younger than 18,
* those with a prior (within 5 years) or synchronous malignancy were excluded.
* presence of distant metastases,
* pregnancy or lactation,
* other concomitant malignant disease.
Minimum Eligible Age

18 Years

Maximum Eligible Age

70 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of North Carolina, Chapel Hill

OTHER

Sponsor Role collaborator

Xuzhou Medical University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Longzhen Zhang

MD,Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

ZHANG Longzhen, MD

Role: STUDY_CHAIR

Xuzhou Medical University

Wang Andrew Z., MD and PHD

Role: STUDY_DIRECTOR

University of North Carolina at Chapel Hill, USA

Wang Jianshe, M.M.

Role: PRINCIPAL_INVESTIGATOR

Xuzhou Medical University

Xin Yong, M.M.

Role: PRINCIPAL_INVESTIGATOR

Xuzhou Medical University

Xu Kai, MD

Role: PRINCIPAL_INVESTIGATOR

Xuzhou Medical University

Tang Tianyou, M.M.

Role: PRINCIPAL_INVESTIGATOR

Xuzhou Medical University

Ding Xin, M.M.

Role: PRINCIPAL_INVESTIGATOR

Xuzhou Medical University

References

Explore related publications, articles, or registry entries linked to this study.

Wang J, Zheng J, Tang T, Zhu F, Yao Y, Xu J, Wang AZ, Zhang L. A Randomized Pilot Trial Comparing Position Emission Tomography (PET)-Guided Dose Escalation Radiotherapy to Conventional Radiotherapy in Chemoradiotherapy Treatment of Locally Advanced Nasopharyngeal Carcinoma. PLoS One. 2015 Apr 27;10(4):e0124018. doi: 10.1371/journal.pone.0124018. eCollection 2015.

Reference Type DERIVED
PMID: 25915944 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

H201021

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.