Pediatric Remote Ischemic Pre-conditioning Prior to Complex Cardiac Surgery
NCT ID: NCT01739088
Last Updated: 2019-05-13
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
53 participants
INTERVENTIONAL
2013-03-31
2017-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Biventricular Pacing in Children After Surgery for Congenital Heart Disease
NCT02806245
Initiation of Resuscitation While Attached to the Cord With Congenital Heart Disease
NCT03690245
Impact of Pulsatile Cardio-Pulmonary Bypass (CPB) on Vital Organ Recovery
NCT00862407
Cerebral Oximetric Monitoring of the Posterior Circulation
NCT00751712
Cerebral Oxygenation and Burst Suppression
NCT04206683
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Potential Concerns in Children: In immature rodents, preconditioning with lipopolysaccharide, or oxygen-glucose deprivation, results in worse brain injury on ischemia-reperfusion. This raises the possibility of harm from IPC in neonates. This is very unlikely for the following reasons. First, this data applies to neonates at \<32 weeks post-conception age. Second, lipopolysaccharide protected the brain when given 4 hr and 24hr before the ischemic event. Third, hypoxic preconditioning is protective to the immature brain.
Safety concerns: Based on the above discussion of potential concerns, and the studies reviewed, we anticipate no adverse effects from RIPC. Discomfort during RIPC is mild and will be treated with sedation if necessary. The dose of midazolam given for this purpose has been shown to be safe.
Potential Interference with Preconditioning: Animal studies have found that beta-blockers, sulfonylurea, caffeine, aminophylline, angiotensin converting enzyme inhibitors, and naloxone interfere with IPC. Patients on any of these drugs will be excluded. There are studies showing that inhalational anesthetics are pharmacologic preconditioning agents. The mechanism of action involves some of the same pathways as IPC. However, the response to IPC and anesthetic preconditioning involve a substantial subset of genes unique to each preconditioning stimulus. Studies of anesthetic preconditioning have found conflicting results suggesting that anesthetic preconditioning, if it occurs, is likely to be enhanced by IPC. Furthermore, in clinical studies with promising results discussed above, anesthetics were used during the surgical procedure.
Objectives: a) To demonstrate the feasibility of patient recruitment to a RIPC RCT at our center; and b) determine the effect of RIPC on the early postoperative course of infants after cardiac surgery. We aim to recruit 4 patients/month for a total of 50 patients in 1 year; this recruitment rate would make a larger trial feasible.
Hypothesis: We hypothesize that a) the target patient recruitment will be feasible, and b) RIPC will result in a 50% reduction in the peak lactate level on day 1 postoperatively.
Study design: We propose a pilot double blind randomized controlled trial.
Randomization will be done by a computer based program to ensure allocation concealment. A total of 50 patients will be randomly assigned in a 1:1 ratio to receive an RIPC stimulus or control (sham-RIPC).
Concomitant medications/interventions: The cardioplegia solution used, and the dose of steroids given in the operating room will be standardized in order to minimize the possibility of confounders. We will use Sevoflurane as an inhalation agent, and will record the dose and duration in both study arms.
Baseline variables: To be sure the groups are comparable and that known risk factors are equally distributed among both groups, we will record the following: demographic variables (sex, gestational age, birth weight, weight at surgery, age at surgery, mother's years of schooling, father's socioeconomic status); preoperative variables (cardiac diagnosis, cyanosis preoperatively (oxygen saturation \<85%), single/biventricular heart physiology, days on mechanical ventilation, inotrope score, lowest Pa02, highest lactate, and highest base deficit); and intraoperative variables (lactate level and troponin I level before CPB, duration of inhalational anesthetic, CPB time, aortic cross clamp time, DHCA use, DHCA duration, and re-CPB in the operating room).
Study procedures: When the patient is admitted at the Stollery Children's Hospital and the necessity of heart surgery with CPB is established, patients will be screened for eligibility. Written informed consent will be asked. After consent, patient demographics and baseline variables will be recorded. Eligible patients will be randomly assigned in a 1:1 ratio to the intervention group or the control group. Randomization will be done by a computer based program at the Epidemiology Coordinating and Research Centre (EPICORE) to facilitate the procedure and to ensure allocation concealment. As a patient qualifies for the trial, a study number and a randomization number will be assigned.
Follow up visit: A follow up visit will be scheduled at age 2 years. During the follow-up visit a certified pediatric psychologist and, who will be unaware if the patients was randomized to the intervention or the control group, will assess the neurodevelopmental outcome of the subject at the tertiary site of origin.
Masking: This is a double blind study. The research nurse will cover the lower body of the subject with a drape, so that whether the cuff is being inflated around or underneath the leg is not known by others. The only people that will know the patient allocation will be at EPICOR and the research nurse performing the intervention.
Patient Withdrawal: A patient may be withdrawn from the study if an intolerable adverse event thought to be related to the RIPC occurs, if the patient's parent(s) wish their child to be withdrawn, or if the clinicians caring for the patient or the site investigator believe it is in the best interests of the patient to withdraw.
Sample size justification: The primary outcome used to determine sample size for a future larger RCT is the Bayley III cognitive composite score 2 years post-operatively. The minimal clinically important difference for the Bayley III cognitive score is half a SD. This is a medium effect size usually considered to indicate different classes of patient outcome. The Boston Circulatory Arrest trial was designed to detect a difference of half a standard deviation in intelligence quotient, and considered the detected 6.5 point deficit in Psychomotor Development Index of the Bayley (43% of a SD) clinically significant. Our data from the CPTP shows a mean Bayley III cognitive score of 91 with SD 16. To detect an 8 (half a SD) point increase in the mean cognitive score at 2 years with an alpha of 0.05 and a power of 0.8, we need 63 patients per group. In the CPTP cohort studies, loss to follow up has been \<2% at 2 years, and exclusion criteria were met by about 5% of eligible neonates in 2009. Loss to follow up is unlikely in these patients because they need frequent follow up visits with the pediatric cardiologist and pediatricians. To account for loss to follow up and early withdrawal from the study we plan to enroll a total of 140 patients (70 patients in each group) in the future study. The Stollery Children's Hospital is the referral center for pediatric cardiac surgery in Western Canada, all the neonates having heart surgery are transferred to the Stollery preoperatively. The enrollment of 50 patients in 1 year in the pilot study would determine that recruitment of 140 patients in 3 years is feasible. Furthermore, based on data from our center (mean peak lactate level 4.6, SD 2.4) a sample size of 50 patients will allow us to detect a 50% reduction in peak lactate level on day 1 post-operative with an alpha (two sided) of 0.05 and 0.9 power.
Statistical Analysis: Demographic and baseline characteristics will be analyzed by descriptive methods. We will analyze all outcome variables on intention to treat basis. The primary efficacy analysis will compare the mean peak lactate level at day 1 post-operatively between the RIPC group and the control group using student-t test. The purpose of the pilot study is to assess the safety and feasibility of conducting the study and as such the data (except the peak lactate level at day 1) will be analyzed with descriptive methods and not used for statistical inferential purposes. Analysis will be done only for the purposes of sample size calculation for the future larger RCT and to establish trends. All statistical tests will be two-sided with 0.05 level of significance. Data will be analyzed with Stata (version 10.0, Statacorp, Texas).
Data collection: All variables will be recorded on paper case report forms by the research nurse. Upon completion, the data will be transferred to an anonymized computer database.
In summary: we plan to study a promising, easy, low cost and simple method (RIPC) with great therapeutic potential to prevent ischemia-reperfusion injury in infants with congenital heart disease.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Remote ischemic preconditioning stimulus
The remote ischemic pre-conditioning arm of the study is the experimental one. Patients in this arm will receive a remote ischemic pre-conditioning stimulus at 24-48 hours pre-operatively, and again intra-operatively before CPB.
Remote ischemic pre-conditioning stimulus.
Forty eight to 24 hours prior to the surgery, patient assigned to remote ischemic pre-conditioning stimulus (RIPC) will have blood pressure cuffs placed on both lower limbs around the upper thigh, and will then have the cuff inflated around the lower limb to a pressure 10 mmHg above systolic blood pressure for 5 minutes, followed by 5 minutes of cuff deflation. This will be done sequentially on each lower limb for two cycles on each limb. In the operating room, after induction of anesthesia, the exact same procedure will be performed in the RIPC group. For each intervention, the legs will be covered by a drape, so that whether the cuff is being inflated around the leg or underneath the leg is not seen by any member of the health care team.
Sham Ischemic Pre-conditioning
In the control (sham-RIPC) group the cuff will be placed just underneath the upper thigh and the cuff will be inflated for 5 minutes, followed by 5 minutes of cuff deflation, done sequentially for two cycles on each side. In the operating room, after induction of anesthesia, the exact same procedure will be performed in the the control group.
Sham Ischemic Pre-conditioning
In the control (sham Ischemic Pre-conditioning) group 48 to 24 hours prior to the surgery a cuff will be placed just underneath the upper thigh and the cuff will be inflated for 5 minutes, followed by 5 minutes of cuff deflation, done sequentially for two cycles on each side.In the operating room, after induction of anesthesia, the exact same procedure will be performed in the RIPC group.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Remote ischemic pre-conditioning stimulus.
Forty eight to 24 hours prior to the surgery, patient assigned to remote ischemic pre-conditioning stimulus (RIPC) will have blood pressure cuffs placed on both lower limbs around the upper thigh, and will then have the cuff inflated around the lower limb to a pressure 10 mmHg above systolic blood pressure for 5 minutes, followed by 5 minutes of cuff deflation. This will be done sequentially on each lower limb for two cycles on each limb. In the operating room, after induction of anesthesia, the exact same procedure will be performed in the RIPC group. For each intervention, the legs will be covered by a drape, so that whether the cuff is being inflated around the leg or underneath the leg is not seen by any member of the health care team.
Sham Ischemic Pre-conditioning
In the control (sham Ischemic Pre-conditioning) group 48 to 24 hours prior to the surgery a cuff will be placed just underneath the upper thigh and the cuff will be inflated for 5 minutes, followed by 5 minutes of cuff deflation, done sequentially for two cycles on each side.In the operating room, after induction of anesthesia, the exact same procedure will be performed in the RIPC group.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age at surgery \<6 weeks old
* Parental consent for enrolment
Exclusion Criteria
* Gestational age \< 37 weeks
* Known medications that prevent RIPC within 48 hours of surgery, including, naloxone, sulphonylurea hypoglycemic agent, angiotensin receptor blocker, or beta blocker
* Patients not admitted to the Neonatal Intensive Care Unit, Pediatric Intensive Care Unit or Pediatric Cardiology Unit 24 hours before surgery. A brain ultrasound, ECG, and chromosomal analysis are done pre-operatively as a standard of care in our institution
6 Weeks
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Women and Children's Health Research Institute, Canada
OTHER
University of Alberta
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Gonzalo Garcia Guerra
Clinical Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Gonzalo Garcia Guerra, MD, MSc
Role: PRINCIPAL_INVESTIGATOR
University of Alberta
Ari Joffe, MD
Role: STUDY_CHAIR
University of Alberta
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Stollery Children's Hospital
Edmonton, Alberta, Canada
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Pro00032388
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.