Pathogenesis of Stress-Induced Cardiomyopathy by I-123 MIBG
NCT ID: NCT01432626
Last Updated: 2016-03-22
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
10 participants
INTERVENTIONAL
2011-09-30
2015-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Hypothesis: Perturbations in sympathetic innervation are the underlying pathogenesis of stress induced cardiomyopathy and will result in abnormalities in I-123 mIBG cardiac imaging. Thus, planar and SPECT I-123 MIBG imaging will provide insight into the pathogenesis of stress-induced cardiomyopathy, and may lead to the development of more specific diagnostic criteria.
Study design: This proposal is for a prospective pilot study to characterize perturbations in cardiac sympathetic innervation in patients with stress induced cardiomyopathy by performing planar and SPECT I-123 MIBG imaging during the acute presentation and after recovery of LV function.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Meta-Iodobenzylguanidine (123I-mIBG) Scintigraphy Imaging in Patients With Heart Failure and Control Subjects Without Cardiovascular Disease
NCT00126438
Meta-Iodobenzylguanidine Scintigraphy Imaging in Patients With Heart Failure and Control Subjects Without Cardiovascular Disease
NCT00126425
Morphological Predictors of Sudden Cardiac Death in Patients With Known Cardiomyopathies
NCT00312624
Stress and Rest Myocardial Tomoscintigraphies Using Mono- or Double-isotope Protocol With a Semiconductor Camera
NCT02869126
123I-mIBG SPECT Imaging
NCT02043522
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The etiology of stress-induced cardiomyopathy remains speculative. Catecholamine excess leading to microvascular dysfunction or direct cardiomyocyte toxicity is hypothesized as the most likely etiology. This hypothesis is supported by the fact that most patients with Takotsubo's cardiomyopathy experience an intense physical or emotional stress. Furthermore, several other observations support this hypothesis. First, catecholamines levels are elevated in patients with stress induced cardiomyopathy at presentation when compared to patients with acute coronary syndrome. Second, multi-vessel coronary vasospasm and transient myocardial perfusion defects have been identified repeatedly in this population. Third, myocardial biopsies show myocarditis, interstitial fibrosis and mononuclear infiltrates, signs consistent with catecholamine toxicity. Fourth, in a mouse model, elevated epinephrine levels cause a switch from beta-2 adrenoreceptor mediated Gs protein signaling to Gi protein signaling, which is negatively inotropic. These findings all support the theory that there is altered sympathetic activity in patients with stress induced cardiomyopathy.
Thus, based on the existing knowledge base of this intriguing disease, an imaging approach that specifically evaluates the sympathetic activation state of the myocardium would appear to be ideally suited to further explore pathophysiology. I-123 radiolabeled metaiodobenzylguanidine, (mIBG) imaging allows for direct analysis of cardiac sympathetic function because it is structurally similar to norepinephrine (NE), and is transported into the cardiac sympathetic neurons by human norepinephrine transporter 1 ( hNET1), in the synaptic cleft. Unlike NE, mIBG is not metabolized by monoamine oxidase or catechol-o-methyl transferase. mIBG requires an intact myocardial sympathetic nervous system for uptake, is stored in the presynaptic vesicles and is released by stimulation with acetylcholine. Experimental manipulation of cardiac sympathetic function alters mIBG uptake and distribution. Planar imaging acquisition enables evaluation of sympathetic activation, while SPECT characterizes regional abnormalities. Measurement of the heart to mediastinal ratio during early and delayed planimetry assesses the initial uptake and washout of the tracer. mIBG uptake follows one of three general patterns: good uptake and retention, good uptake with washout or poor uptake. The different patterns likely represent the level of sympathetic activation, increase in sympathetic tone and heart failure-induced damage to the myocardial sympathetic nervous system. mIBG uptake is altered in patient with diabetic neuropathy, congestive heart failure, myocardial infarction. The uptake and washout patterns correlate with severity of neuropathy, severity of congestive heart failure, congestive heart failure treatment response, improvement in ejection fraction, cardiac death and ventricular arrhythmogenic potential.
Preliminary data in patients with Takotsubo's cardiomyopathy has shown decrease in mIBG uptake with an increased washout in the acute phase, with improved retention after left ventricular functional recovery. Furthermore, regional decrease in tracer uptake corresponds to the regional wall motion abnormalities. However, a systematic exploration of mIBG uptake patterns in consecutive patients with Takotsubo's cardiomyopathy has not been performed. Of note, PET imaging with 11C Hydroxyephedrine has described similar sympathetic dysfunction in Takotsubo's cardiomyopathy.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Stress Induced Cardiomyopathy Patients
Patients presenting with stress induced cardiomyopathy, after meeting the Mayo criteria (normal coronary anatomy, EKG changes/Enzyme abnormalities, wall motion abnormalities consistent with stress induced cardiomyopathy and no evidence of pheochromocytoma) and signing informed consent, will receive an I123-mIBG scan to determine the sympathetic function of the heart during the acute presentation and after functional recovery.
I-123 radiolabeled metaiodobenzylguanidine cardiac imaging
All subjects will receive an intravenous injection of 10 mCi (370 MBq) of 123I-mIBG. A ±10% tolerance of the nominal dose will be allowed, thus yielding an acceptable dose range of 9 to 11 mCi (333 to 407 MBq). The investigational medicinal product will be administered in a volume of 5 mL (diluted using 0.9% sodium chloride as needed) and injected over 1 to 2 minutes. The patient will have planar and SPECT imaging performed after the dose is administered. This dosing and imaging procedure will be performed during the acute phase and after the patient has recovered cardiac function, approximately 6 weeks later. This means that each study subject will receive a total of 2 doses of I123-mIBG at 2 different time points.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
I-123 radiolabeled metaiodobenzylguanidine cardiac imaging
All subjects will receive an intravenous injection of 10 mCi (370 MBq) of 123I-mIBG. A ±10% tolerance of the nominal dose will be allowed, thus yielding an acceptable dose range of 9 to 11 mCi (333 to 407 MBq). The investigational medicinal product will be administered in a volume of 5 mL (diluted using 0.9% sodium chloride as needed) and injected over 1 to 2 minutes. The patient will have planar and SPECT imaging performed after the dose is administered. This dosing and imaging procedure will be performed during the acute phase and after the patient has recovered cardiac function, approximately 6 weeks later. This means that each study subject will receive a total of 2 doses of I123-mIBG at 2 different time points.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* The subject is able and willing to comply with study procedures and signed and dated informed consent is obtained.
* The subject is male, or a female who is either surgically sterile (has a documented bilateral oophorectomy and/or hysterectomy), postmenopausal (cessation of menses for more than 1 year), non-lactating, or of childbearing potential for whom the result of a urine pregnancy test performed at screening is negative.
* The subject's left heart catheterization (obtained as part of the clinical evaluation) is without clinically significant coronary atherosclerotic disease.
* The subject's echocardiogram (obtained as part of the clinical evaluation) is consistent with a diagnosis of Takotsubo's Cardiomyopathy.
* The patient's electrocardiogram or cardiac enzymes including troponin or CKMB (obtained as part of the clinical evaluation) is abnormal.
* The patient does not have a diagnosis or suspicion of Pheochromocytoma.
Exclusion Criteria
* The subject has a ventricular pacemaker that routinely functions (\>5% paced beats) or has received defibrillation (either external or via an ICD), anti-tachycardic pacing, or cardioversion to treat a previous arrhythmic event.
* The subject was previously entered into this study or has participated in any other investigational medicinal product or medical device study within 30 days of enrollment.
* The subject has a previous history or suspicion of significant allergic reaction or anaphylaxis to iodine or iodinated compounds.
* The subject had cardiac revascularization (eg, percutaneous transluminal coronary angioplasty, PCI, or CABG) or insertion of an ICD within the last 30 days.
* The subject has a serious non-cardiac medical condition associated with significant elevation of plasma catecholamines including Pheochromocytoma.
* The subject is claustrophobic or has a movement disorder that prevents him/her from lying still in a supine position for up to an hour at a time.
* The subject has renal insufficiency (serum creatinine \> 3.0 mg/dl \[265umol/L\]).
* The subject has participated in a research study using ionizing radiation in the previous 12 months.
* The subject has a history of Type I or Type II Diabetes Mellitus with signs of neurological involvement, signs or symptoms of neurological disease (eg, Parkinson's Disease, Multiple System Atrophy, Parkinsonian syndromes), or other diseases known to affect the sympathetic nervous system.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
GE Healthcare
INDUSTRY
University of Pittsburgh
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Prem Soman
Principle Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Prem Soman, MD
Role: PRINCIPAL_INVESTIGATOR
University of Pittsburgh Heart Vascular Institute
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PRO10080198
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.