Treatment Response in Schizophrenia: Bridging Imaging and Postmortem Studies

NCT ID: NCT00937716

Last Updated: 2021-07-26

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

75 participants

Study Classification

OBSERVATIONAL

Study Start Date

2008-10-31

Study Completion Date

2021-06-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The overarching goal is to identify imaging markers that will predict treatment response, and to confirm or validate these biomarkers using anatomical studies of postmortem tissue. Early detection of drug response would yield specific treatment strategies that are tailored to the individual, thus improving both the quality of life of the patients and drastically reducing the costs associated with unsuccessful treatment strategies.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Our past brain imaging and Positron Emission Tomography (PET) studies have contributed to the understanding of specific brain regions related to treatment response to antipsychotic drugs in schizophrenia. We have found that treatment response to antipsychotic medication is related to blood-flow patterns in specific regions (such as the ventral striatum, anterior cingulate cortex, and hippocampus). In addition, functional changes in these regions following one week of antipsychotic drug therapy are predictive of treatment response. Dr. Roberts, a neuroanatomist, has studied the post mortem (after death) brains of patients with schizophrenia while working in association with the Maryland Brain Collection. Her studies have indicated an increased number of dopaminergic synapses (that is, neurons that produce the neurotransmitter dopamine) in these regions in patients who were known to have had a favorable response to antipsychotic drug therapy. In addition, from this post-mortem work we know the number of glutamate synapses in these regions were significantly different between good treatment responders and poor responders.

From these studies we have hypothesized that in schizophrenia an over-abundance of dopamine in the ventral striatum interferes with normal functioning by limiting the transmission of glutamate. Putatively, antipsychotic medications may decrease the symptoms of schizophrenia by restoring glutamatergic activity in the ventral striatum and projected areas, such as the anterior cingulate cortex and hippocampus. We have hypothesized that those individuals responding favorably to antipsychotic drug therapy will display greater glutamate activity in the ventral striatum (due to dopamine blockade) and the other regions receiving glutamate projections. This should lead to restored neuronal functioning in good responders when compared to treatment resistant and poor responders to antipsychotic drug treatment. We will test this hypothesis using complementary imaging and postmortem studies yielding data that will permit the formulation of a comprehensive model for antipsychotic drug responses in subjects with severe mental illness.

Magnetic Resonance is a technique for probing atoms and molecules based upon their interaction with an external magnetic field. Magnetic Resonance does not use ionizing radiation. The most familiar example of this is Magnetic Resonance Imaging (MRI). Another application of Magnetic Resonance is called functional Magnetic Resonance Imaging (fMRI). Functional Magnetic Resonance Imaging (fMRI) allows us to measure the Blood Oxygenation Level-Dependent (BOLD) response, a measure of blood flow in the brain that is known to correlate with neuronal activity. Another application of Magnetic Resonance is Magnetic Resonance Spectroscopy (MRS), which allows the measurements of specific metabolites such as N-acetyl aspartate (NAA), a measure of neuronal integrity, and Glutamate, which is involved in neurotransmission and metabolism. We will seek to replicate and extend our past Positron Emission Tomography (PET) findings with functional magnetic resonance imaging (fMRI) using cognitive tasks that are known to activate the hippocampus (Episodic memory task) and the anterior cingulate cortex (Stroop task). This aim will further seek to parse out the differential contribution of the hippocampus and the anterior cingulate cortex to treatment response. At the same time, N-acetylaspartate, a marker of neuronal integrity, and glutamate measurements obtained with magnetic resonance spectroscopy in the anterior cingulate cortex and hippocampus will directly probe in the living brain the relation between neuronal integrity, glutamate function, and treatment response. In parallel, the postmortem work of Dr. Roberts (UAB IRB exemption: NO70813001, IRB#F080306003) will concentrate on the study of the anterior cingulate cortex in post mortem brains of schizophrenic patients. These studies should allow the development of hypotheses about the pathophysiology of treatment response and provide a basis for the interpretation of functional imaging data. The overarching goal is to identify imaging markers that will predict treatment response, and to confirm or validate these biomarkers using anatomical studies of postmortem tissue. Early detection of drug response would yield specific treatment strategies that are tailored to the individual, thus improving both the quality of life of the patients and drastically reducing the costs associated with unsuccessful treatment strategies.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Schizophrenia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Diagnosis of Schizophrenia

Patients with a diagnosis of schizophrenia that have been off antipsychotic medicine and would like to resume treatment will be enrolled in the study.

No interventions assigned to this group

Healthy Volunteers

Healthy Volunteers without a psychiatric diagnosis, central nervous system condition, serious head injury, or current drug use will be matched on an individual basis to schizophrenic participants and used as a control population.

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Normal volunteers or schizophrenic patients between the age of 19 and 55.

Exclusion Criteria

* Individuals with a diagnosable central nervous system illness.
* Major medical condition, active substance abuse or dependence, pregnancy, or history of head trauma.
Minimum Eligible Age

19 Years

Maximum Eligible Age

55 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Alabama at Birmingham

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Dr. Adrianne C Lahti

Professor & Division Director of Behavioral Neurobiology

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Adrienne C Lahti, MD

Role: PRINCIPAL_INVESTIGATOR

University of Alabama at Birmingham, Department of Psychiatry

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Alabama at Birmingham, Department of Psychiatry, SC 501

Birmingham, Alabama, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

F080807011

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Schizophrenia Imaging
NCT01655472 UNKNOWN NA
Neuromodulation for Schizophrenia
NCT05580211 RECRUITING NA
Online Intervention To Improve Motivation
NCT07157293 NOT_YET_RECRUITING NA