Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
525 participants
OBSERVATIONAL
2007-11-30
2013-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Study of the Pathobiology of Bronchopulmonary Dysplasia in Newborns
NCT00006058
Aerosolized Surfactant in Neonatal RDS
NCT02294630
Impact of Surfactant's Availability on Newborns
NCT00005432
Clinical Interventions in Respiratory Distress Syndrome and Neonatal Lung Injury - SCOR in Lung Biology and Diseases in Infants and Children
NCT00005683
A Multicenter, Randomized, Open Label Trial of a New Animal Extracted Surfactant to Treat RDS in Preterm Infants
NCT02305160
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Genetic association
Infants with and without neonatal respiratory distress syndrome undergo surfactant gene sequencing to identify genomic variants associated with neonatal respiratory distress syndrome
No interventions assigned to this group
Nutrient
To newborn infants with respiratory distress syndrome, we administer stable isotopically labeled nutrients (precursors of surfactant phospholipids or proteins) to permit mass spectrometry-based comparison of surfactant phospholipid and protein turnover.
Nutrient
We administer stable isotopically labeled precursors of surfactant phospholipids (\[1-13C1\] acetate) and of surfactant protein-B (\[5,5,5-2H3\] leucine) to infants with neonatal respiratory distress syndrome. Using mass spectrometry, we measure incorporation of stable isotopically labeled precursors in tracheal aspirates and compare surfactant phospholipid and surfactant protein-B turnover.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Nutrient
We administer stable isotopically labeled precursors of surfactant phospholipids (\[1-13C1\] acetate) and of surfactant protein-B (\[5,5,5-2H3\] leucine) to infants with neonatal respiratory distress syndrome. Using mass spectrometry, we measure incorporation of stable isotopically labeled precursors in tracheal aspirates and compare surfactant phospholipid and surfactant protein-B turnover.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
1 Day
6 Months
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Heart, Lung, and Blood Institute (NHLBI)
NIH
Washington University School of Medicine
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
F. S. Cole, M.D.
Role: PRINCIPAL_INVESTIGATOR
Washington University School of Medicine
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
St. Louis Children's Hospital
St Louis, Missouri, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Tomazela DM, Patterson BW, Hanson E, Spence KL, Kanion TB, Salinger DH, Vicini P, Barret H, Heins HB, Cole FS, Hamvas A, MacCoss MJ. Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics. Anal Chem. 2010 Mar 15;82(6):2561-7. doi: 10.1021/ac1001433.
Hamvas A, Heins HB, Guttentag SH, Wegner DJ, Trusgnich MA, Bennet KW, Yang P, Carlson CS, An P, Cole FS. Developmental and genetic regulation of human surfactant protein B in vivo. Neonatology. 2009;95(2):117-24. doi: 10.1159/000153095. Epub 2008 Sep 6.
Hamvas A, Nogee LM, Wegner DJ, Depass K, Christodoulou J, Bennetts B, McQuade LR, Gray PH, Deterding RR, Carroll TR, Kammesheidt A, Kasch LM, Kulkarni S, Cole FS. Inherited surfactant deficiency caused by uniparental disomy of rare mutations in the surfactant protein-B and ATP binding cassette, subfamily a, member 3 genes. J Pediatr. 2009 Dec;155(6):854-859.e1. doi: 10.1016/j.jpeds.2009.06.006. Epub 2009 Aug 3.
McBee AD, Wegner DJ, Carlson CS, Wambach JA, Yang P, Heins HB, Saugstad OD, Trusgnich MA, Watkins-Torry J, Nogee LM, Henderson H, Cole FS, Hamvas A. Recombination as a mechanism for sporadic mutation in the surfactant protein-C gene. Pediatr Pulmonol. 2008 May;43(5):443-50. doi: 10.1002/ppul.20782.
Garmany TH, Wambach JA, Heins HB, Watkins-Torry JM, Wegner DJ, Bennet K, An P, Land G, Saugstad OD, Henderson H, Nogee LM, Cole FS, Hamvas A. Population and disease-based prevalence of the common mutations associated with surfactant deficiency. Pediatr Res. 2008 Jun;63(6):645-9. doi: 10.1203/PDR.0b013e31816fdbeb.
Wambach JA, Yang P, Wegner DJ, An P, Hackett BP, Cole FS, Hamvas A. Surfactant protein-C promoter variants associated with neonatal respiratory distress syndrome reduce transcription. Pediatr Res. 2010 Sep;68(3):216-20. doi: 10.1203/PDR.0b013e3181eb5d68.
Anadkat JS, Kuzniewicz MW, Chaudhari BP, Cole FS, Hamvas A. Increased risk for respiratory distress among white, male, late preterm and term infants. J Perinatol. 2012 Oct;32(10):780-5. doi: 10.1038/jp.2011.191. Epub 2012 Jan 5.
Agrawal A, Hamvas A, Cole FS, Wambach JA, Wegner D, Coghill C, Harrison K, Nogee LM. An intronic ABCA3 mutation that is responsible for respiratory disease. Pediatr Res. 2012 Jun;71(6):633-7. doi: 10.1038/pr.2012.21. Epub 2012 Feb 15.
Bereman MS, Tomazela DM, Heins HS, Simonato M, Cogo PE, Hamvas A, Patterson BW, Cole FS, MacCoss MJ. A method to determine the kinetics of multiple proteins in human infants with respiratory distress syndrome. Anal Bioanal Chem. 2012 Jun;403(8):2397-402. doi: 10.1007/s00216-012-5953-3. Epub 2012 Apr 14.
Wambach JA, Wegner DJ, Depass K, Heins H, Druley TE, Mitra RD, An P, Zhang Q, Nogee LM, Cole FS, Hamvas A. Single ABCA3 mutations increase risk for neonatal respiratory distress syndrome. Pediatrics. 2012 Dec;130(6):e1575-82. doi: 10.1542/peds.2012-0918. Epub 2012 Nov 19.
Wambach JA, Wegner DJ, Heins HB, Druley TE, Mitra RD, Hamvas A, Cole FS. Synonymous ABCA3 variants do not increase risk for neonatal respiratory distress syndrome. J Pediatr. 2014 Jun;164(6):1316-21.e3. doi: 10.1016/j.jpeds.2014.02.021. Epub 2014 Mar 20.
Wambach JA, Casey AM, Fishman MP, Wegner DJ, Wert SE, Cole FS, Hamvas A, Nogee LM. Genotype-phenotype correlations for infants and children with ABCA3 deficiency. Am J Respir Crit Care Med. 2014 Jun 15;189(12):1538-43. doi: 10.1164/rccm.201402-0342OC.
Jackson T, Wegner DJ, White FV, Hamvas A, Cole FS, Wambach JA. Respiratory failure in a term infant with cis and trans mutations in ABCA3. J Perinatol. 2015 Mar;35(3):231-2. doi: 10.1038/jp.2014.236.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
07-0156
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.