Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
240 participants
OBSERVATIONAL
2002-10-31
2026-02-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
[124I]FIAU PET-CT Scanning in Diagnosing Osteomyelitis in Patients With Diabetic Foot Infection
NCT01764919
Comparison of FDG PET and Bone Scintigraphy/Labelled Leukocyte/Gallium Scintigraphy in Diabetic Foot Osteomyelitis
NCT03712046
18F-Fluoride Positron Emission Tomography (PET) in Paget's Disease of Bone
NCT00306046
PET/CT Scanning for the Follow-up of Antibiotic Treatment of Infectious Osteoarthritis in the Diabetic Foot
NCT01322256
18F-FLT Positron Emission Tomography and Diffusion-Weighted Magnetic Resonance Imaging in Planning Surgery and Radiation Therapy and Measuring Response in Patients With Newly Diagnosed Ewing Sarcoma
NCT01825902
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
According to the literature, the most accurate nuclear medicine modality for detecting infection associated with diabetic foot is the labeled WBC method. We hypothesize that FDG-PET imaging has several advantages over this method. Detection of infection by labeled WBC imaging is based upon the assumption that the administered cells will migrate to the sites of infection. Since the majority of the labeled leukocyte preparation consists of neutrophils, inflammatory/infectious processes with a predominantly neutrophilic infiltrate (acute infections) are likely to yield positive results. However, most infections associated with diabetic foot are sub-acute or chronic. Consequently, the dominant inflammatory cells involved are monocytes and lymphocytes. Therefore, labeled leukocytes are unlikely to detect chronic infection since very few monocytes and lymphocytes are labeled. In addition, the previous treatment (antibiotics, etc) can severely reduce the chemotropic effect of bacteria and therefore, fewer leukocytes will migrate to the infectious sites, rendering the labeled leukocyte method ineffective.
In contrast, the uptake of FDG in inflammatory cells reflects "in vivo labeling" of the existing cells at the site of infection soon after the administration of the compound. This would indicate that FDG-PET technique might allow imaging a substantially larger population of cells, which are residing in the area of infection and inflammation. Therefore, in addition to considerable simplification of procedures associated with the labeled WBC method, including the time required to complete the study, this approach may provide higher sensitivity for diagnosing infection in such settings. Furthermore, since FDG uptake does not rely upon leukocyte migration, treatment with antibiotics is less likely to affect its sensitivity in delineating the sites of infection. One possible advantage of the labeled WBC method over FDG-PET imaging is that high serum glucose levels do not appear to have an adverse effect on the test results with the former technique while hyperglycemia is known to decrease tumor cell FDG uptake. However, our preliminary results indicate that high glucose levels do not negatively affect FDG uptake by inflammatory cells. Based on these observations, FDG-PET imaging appears to be an attractive alternative to conventional techniques for the detection of infection.
FDG-PET imaging offers a unique tool for the diagnosis and management of the diabetic foot. Through the establishment of appropriate diagnostic criteria, a PET scan may prove to be highly accurate in localizing deep infections of bone and soft tissue associated with the complicated diabetic foot. By distinguishing these infections from inflammation, it has the potential to become the optimal diagnostic imaging technique with which to diagnose and manage patients with diabetic foot. Therefore, research studies designed to further validate the ability of this technique are essential to achieving this goal.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
FDG-PET Imaging
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Study I: FDG-PET imaging of patients with diabetic foot without clinical suspicion of osteomyelitis or deep-seated tissue infections The patients must have clinical diagnosis of uncomplicated diabetic foot. Each patient will undergo appropriate evaluation including history, physical examination, standard radiographic evaluation (including MRI), and grading of peripheral neuropathy using the Michigan Neuropathy Screening Instrument (MNSI). Patients will be divided into three groups, corresponding to MNSI score of 0-3, 4-8, and 9-13, which we will classify as mild, moderate, and severe, respectively. We intend to enroll 26 patients in each of the first two groups and 27 patients in the third.
Study II: FDG-PET imaging of patients with diabetic foot and clinical suspicion of osteomyelitis or deep-seated infections The patients must have clinical diagnosis of complicated diabetic foot. These patients will be those suspected of having a deep-seated infection and may or may not be scheduled to undergo amputation or debridement of affected tissue. Each patient will undergo an appropriate evaluation including history, physical examination, radiologic examination including MRI, MNSI, and vascular assessment by segmental Doppler pressures and pulse wave recording.
Exclusion Criteria
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institutes of Health (NIH)
NIH
University of Pennsylvania
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Abass Alavi, MD
Role: PRINCIPAL_INVESTIGATOR
University of Pennsylvania
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hospital of the University of Pennsylvania
Philadelphia, Pennsylvania, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.