Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE1
15 participants
INTERVENTIONAL
1992-08-21
2010-04-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In an attempt to improve the prognosis for these patients, researchers have developed a new approach to brain tumor therapy. This approach makes use of DNA technology to transfer genes sensitive to therapy into the cells of the tumor.
Infections with the herpes simplex virus can cause cold sores in the area of the mouth. A drug called ganciclovir (Cytovene) can kill the virus. Ganciclovir is effective because the herpes virus contains a gene (Herpes-Thymidine Kinase TK gene) that is sensitive to the drug. Researchers have been able to separate this gene from the virus.
Using DNA technology, researchers hope to transfer and implant the TK gene into tumor cells making them sensitive to ganciclovir. In theory, giving patients ganciclovir will kill all tumor cells that have the TK gene incorporated into them.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Gene Therapy in Treating Patients With Primary Brain Tumors
NCT00002824
Gene Therapy in Treating Patients With Recurrent or Progressive Brain Tumors
NCT00004080
Neural Stem Cell Based Virotherapy of Newly Diagnosed Malignant Glioma
NCT03072134
Stem Cell Transplant for High Risk Central Nervous System (CNS) Tumors
NCT00179803
Natural Killer Cell (CYNK-001) IV Infusion or IT Administration in Adults With Recurrent GBM
NCT04489420
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In an attempt to improve this grim prognosis of patients with malignant brain tumors (both primary tumors and secondary metastasis from systemic cancer such as melanoma, lung and breast cancer), we developed a novel approach to the therapy of brain tumors. This approach makes use of recombinant DNA technology to transfer a sensitivity gene into a brain tumor. This is achieved by direct injection of the tumor with a cell line actively producing a retroviral vector carrying a gene conferring drug sensitivity to the tumor. A retroviral vector is a mouse retrovirus genetically engineered to replace its own genes with a new gene. Such vectors are capable of "infecting" mammalian cells and stably incorporate their new genetic material into the genome of the infected host. The producer cell is an NIH 3T3 cell that has been genetically engineered to continually produce retroviral vectors. The new gene is incorporated into the genome of the tumor cells and expresses the protein which is encoded by the new gene. This protein (the herpes simplex virus enzyme thymidine kinase, HS-tk) sensitizes the tumor cells to an antiviral drug (ganciclovir, GCV) which is a natural substrate for HS-tk. The enzymatic process induced by GCV leads to death of a natural substrate for HS-tk. The enzymatic process induced by GCV leads to death of the cell expressing the herpes TK activity, i.e., death of the tumor cells. Since the HS-tk enzyme which is normally present in mammalian cells has very low affinity for GCV, systemic toxicity related to this mechanism is not observed. This type of in vivo gene transfer has several unique features. First, these retroviral-vectors will only integrate and express their genes in cells which are actively synthesizing DNA. Therefore, surrounding non-proliferating normal brain tissue should not acquire the HS-tk gene and will remain insensitive to GCV. Second, all of the transduced tumor cells (and retroviral vector producing cells) will be killed by the host immune response and/or GCV treatment eliminating potential concern about insertional mutagenesis giving rise to malignant cells.
This is the first clinical attempt to treat malignant tumors in human beings by in-vivo genetic manipulation of tumor's genome.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
TREATMENT
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Cytovene (Ganciclovir Sodium)
G1TKSVNa.53 Producer Cell Line
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
Patients with HIV infection will not be accepted for this study.
19 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of Neurological Disorders and Stroke (NINDS)
NIH
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
National Institutes of Health
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
National Institutes of Health Clinical Center, 9000 Rockville Pike
Bethesda, Maryland, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Ram Z, Culver KW, Oshiro EM, Viola JJ, DeVroom HL, Otto E, Long Z, Chiang Y, McGarrity GJ, Muul LM, Katz D, Blaese RM, Oldfield EH. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med. 1997 Dec;3(12):1354-61. doi: 10.1038/nm1297-1354.
Oshiro EM, Viola JJ, Oldfield EH, Walbridge S, Bacher J, Frank JA, Blaese RM, Ram Z. Toxicity studies and distribution dynamics of retroviral vectors following intrathecal administration of retroviral vector-producer cells. Cancer Gene Ther. 1995 Jun;2(2):87-95.
Oldfield EH, Ram Z, Chiang Y, Blaese RM. Intrathecal gene therapy for the treatment of leptomeningeal carcinomatosis. GTI 0108. A phase I/II study. Hum Gene Ther. 1995 Jan;6(1):55-85. doi: 10.1089/hum.1995.6.1-55. No abstract available.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
92-N-0246
Identifier Type: -
Identifier Source: secondary_id
920246
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.