Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ENROLLING_BY_INVITATION
PHASE3
162 participants
INTERVENTIONAL
2025-09-01
2027-03-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Objective This study aims to evaluate the utility of oral or topical catechins in preventing and managing acute and chronic radiation-induced dermatitis in cancer patients, comparing their effectiveness against standard treatment.
Material and Methods
This will be a randomized, double-blind, phase III clinical trial with a longitudinal and comparative design. Patients will be allocated into two primary study groups: prevention (n=81) and treatment (n=81). Each group will be further divided into four treatment arms:
Epigallocatechin gallate (experimental aerosol)
Epicatechin (experimental capsule)
Saline control arm (aerosol)
Microcrystalline cellulose excipient control arm (capsule)
All participants across all groups will receive standard care. Study endpoints will include the assessment of utility, toxicity, quality of life, and cosmesis, using various validated scales and scores.
Ethics This study adheres to the principles outlined in the Helsinki Declaration (2024), the Nuremberg Code, and Mexico's General Health Law on health research. Given the wide therapeutic margin of the interventions, the study is classified as minimal risk.
Statistical Analysis To evaluate the efficacy of the intervention (specifically, the change in the risk of dermatitis and fibrosis), we will calculate the hazard ratio using Cox regression and compare it with the Log-Rank test. Additionally, both fixed and random effects models will be performed and compared using the likelihood ratio test.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Study of Topically Applied Green Tea Extract for Radio Dermatitis and Radiation Mucositis
NCT01481818
Polyphenol Rich Aerosol as a Support for Cancer Patients in Minimizing Side Effects After a Radiation Therapy
NCT05994638
The Clinical Study for Evaluation of Efficacy and Safety of EGF on Oral Mucositis in Radiation Therapy Patients
NCT01099891
Capsaicin Lozenges in Treating Patients With Mucositis Caused by Radiation Therapy
NCT00003610
Topical Diclofenac for Prevention of Radiation-induced Dermatitis
NCT06905561
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Oral epicatechin prevention group
Oral epicatechin at a dose of 50 mg orally every 12 hours, starting from the start of radiotherapy, considering that one dose should be taken 2.5 hours before radiotherapy.
Epicatechin
A comparison will be made between oral catechin (epicatechin) from two approaches: a preventive approach and a therapeutic approach.
Oral placebo prevention group
Microcrystalline cellulose at a dose of 50 mg orally every 12 hours, starting from the start of radiotherapy, considering that one dose should be taken 2.5 hours before radiotherapy.
Microcrystalline Cellulose NF (placebo)
A comparison will be made between oral placebo (microcrystalline cellulose) from two approaches: a preventive approach and a therapeutic approach.
Topical epigallocatechin-3 gallate (EGCG) prevention group
EGCG 660 μmol/L solution will be applied 0.5mL/cm2, 3 times a day in the treatment area from the start of radiotherapy and up to 2 weeks after the end of radiotherapy.
Epigallocatechin Gallate (EGCG)
A comparison will be made between topical catechin (EGCG) from two approaches: a preventive approach and a therapeutic approach.
Topical placebo prevention group
Application of 0.5 mL/cm2 of 0.9% saline solution to the treatment area, three times per day. This regimen should be followed from the onset of radiotherapy until two weeks post-radiotherapy.
Saline (0.9% NaCl)
A comparison will be made between topical placebo (0.9% saline solution) from two approaches: a preventive approach and a therapeutic approach.
Oral epicatechin treatment group
Oral epicatechin at a dose of 50 mg orally every 12 hours from the development of grade 1 radiodermatitis, considering that one should be taken 2.5 hours before radiotherapy.
Epicatechin
A comparison will be made between oral catechin (epicatechin) from two approaches: a preventive approach and a therapeutic approach.
Oral placebo treatment group
Microcrystalline cellulose at a dose of 50 mg orally every 12 hours, starting from the development of grade 1 radiodermatitis, considering that a dose should be taken 2.5 hours before radiotherapy.
Microcrystalline Cellulose NF (placebo)
A comparison will be made between oral placebo (microcrystalline cellulose) from two approaches: a preventive approach and a therapeutic approach.
Topical EGCG treatment group
A solution of epigallocatechin-3 gallate (EGCG) 660 μmol/L, 0.5 mL/cm2, will be applied 3 times a day to the area to be treated from the development of grade 1 radiodermatitis and up to 2 weeks after the end of radiotherapy.
Epigallocatechin Gallate (EGCG)
A comparison will be made between topical catechin (EGCG) from two approaches: a preventive approach and a therapeutic approach.
Topical placebo treatment group
Application of 0.5 mL/cm2 of 0.9% saline solution to the treatment area, three times per day. This regimen should be followed from the development of grade 1 radiodermatitis until two weeks post-radiotherapy.
Saline (0.9% NaCl)
A comparison will be made between topical placebo (0.9% saline solution) from two approaches: a preventive approach and a therapeutic approach.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Epicatechin
A comparison will be made between oral catechin (epicatechin) from two approaches: a preventive approach and a therapeutic approach.
Epigallocatechin Gallate (EGCG)
A comparison will be made between topical catechin (EGCG) from two approaches: a preventive approach and a therapeutic approach.
Microcrystalline Cellulose NF (placebo)
A comparison will be made between oral placebo (microcrystalline cellulose) from two approaches: a preventive approach and a therapeutic approach.
Saline (0.9% NaCl)
A comparison will be made between topical placebo (0.9% saline solution) from two approaches: a preventive approach and a therapeutic approach.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Complete blood count, blood chemistry, and liver function tests within normal ranges.
* Availability of an anatomopathological report.
* Aged between 18 and 75 years.
* Karnofsky performance status (KPS) score \> 60 or an Eastern Cooperative Oncology Group (ECOG) performance status score \< 3.
* Candidate for radiotherapy with a prescribed dose of ≥40 Gy or its biological equivalent (EQD2).
* Must provide written informed consent to participate in the study.
* Must be able to swallow capsules.
* Must meet one of the following cohort-specific criteria:
1. Prevention cohort: No clinical evidence of dermatitis at the initiation of radiotherapy.
2. Treatment cohort: Development of grade 1 dermatitis during radiotherapy, with symptom onset within the last 3 days.
Exclusion Criteria
* Immunocompromised or on chronic therapy with immunosuppressive or immunomodulatory medications.
* History of chemical burns or unhealed wounds in the intended radiotherapy treatment area.
* Current diagnosis of skin cancer or a known diagnosis of a DNA repair gene defect.
* Prior radiotherapy to the area currently being treated.
* Known allergy to any of the study compounds.
* Currently receiving treatment with bortezomib, sunitinib, ticagrelor, or other antithrombotic agents.
Withdrawal Criteria:
* Adherence to the study intervention is less than 80%.
* Withdrawal of consent.
* Suspension of their radiotherapy sessions secondary to an acute infectious disease or the need for hospitalization
18 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Universidad de Guanajuato
OTHER
Hospital Regional de Alta Especialidad del Bajio
OTHER
CARLOS FRANCISCO SAAVEDRA GARCIA
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
CARLOS FRANCISCO SAAVEDRA GARCIA
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Carmen Palacios, MD; PhD; MMSc; genetics
Role: STUDY_DIRECTOR
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
HRAEB
León, Guanajuato, Mexico
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Rey JL, Felix H, De Bary JB, Haller L. Ceftriaxone for treatment of severe infections in peripheral health centers in Africa. Chemioterapia. 1987 Jun;6(2 Suppl):382-3. No abstract available.
Masek P, Winklerova S. [Fluorescein and its adverse effects]. Cesk Oftalmol. 1989 Sep;45(5):362-4. Czech.
Fraser IE. Proteins of keratin and their synthesis. II. Incorporation of [35S]cystine into prekeratin and keratin proteins. Aust J Biol Sci. 1969 Feb;22(1):231-8. No abstract available.
Vollmann J, Winau R. Informed consent in human experimentation before the Nuremberg code. BMJ. 1996 Dec 7;313(7070):1445-9. doi: 10.1136/bmj.313.7070.1445.
World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Participants. JAMA. 2025 Jan 7;333(1):71-74. doi: 10.1001/jama.2024.21972.
Hopewell S, Chan AW, Collins GS, Hrobjartsson A, Moher D, Schulz KF, Tunn R, Aggarwal R, Berkwits M, Berlin JA, Bhandari N, Butcher NJ, Campbell MK, Chidebe RCW, Elbourne D, Farmer A, Fergusson DA, Golub RM, Goodman SN, Hoffmann TC, Ioannidis JPA, Kahan BC, Knowles RL, Lamb SE, Lewis S, Loder E, Offringa M, Ravaud P, Richards DP, Rockhold FW, Schriger DL, Siegried NL, Staniszewska S, Taylor RS, Thabane L, Torgerson D, Vohra S, White IR, Boutron I. CONSORT 2025 statement: Updated guideline for reporting randomised trials. PLoS Med. 2025 Apr 14;22(4):e1004587. doi: 10.1371/journal.pmed.1004587. eCollection 2025 Apr.
Wooding H, Yan J, Yuan L, Chyou TY, Gao S, Ward I, Herst PM. The effect of Mepitel Film on acute radiation-induced skin reactions in head and neck cancer patients: a feasibility study. Br J Radiol. 2018 Jan;91(1081):20170298. doi: 10.1259/bjr.20170298. Epub 2017 Nov 8.
Robijns J, Censabella S, Claes S, Pannekoeke L, Busse L, Colson D, Kaminski I, Bulens P, Maes A, Noe L, Brosens M, Timmermans A, Lambrichts I, Somers V, Mebis J. Prevention of acute radiodermatitis by photobiomodulation: A randomized, placebo-controlled trial in breast cancer patients (TRANSDERMIS trial). Lasers Surg Med. 2018 Feb 10. doi: 10.1002/lsm.22804. Online ahead of print.
Yu Z, Samavat H, Dostal AM, Wang R, Torkelson CJ, Yang CS, Butler LM, Kensler TW, Wu AH, Kurzer MS, Yuan JM. Effect of Green Tea Supplements on Liver Enzyme Elevation: Results from a Randomized Intervention Study in the United States. Cancer Prev Res (Phila). 2017 Oct;10(10):571-579. doi: 10.1158/1940-6207.CAPR-17-0160. Epub 2017 Aug 1.
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipic M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambre C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Andrade RJ, Fortes C, Mosesso P, Restani P, Arcella D, Pizzo F, Smeraldi C, Wright M. Scientific opinion on the safety of green tea catechins. EFSA J. 2018 Apr 18;16(4):e05239. doi: 10.2903/j.efsa.2018.5239. eCollection 2018 Apr.
Zhao H, Zhu W, Jia L, Sun X, Chen G, Zhao X, Li X, Meng X, Kong L, Xing L, Yu J. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol. 2016;89(1058):20150665. doi: 10.1259/bjr.20150665. Epub 2015 Nov 26.
Zhu W, Jia L, Chen G, Zhao H, Sun X, Meng X, Zhao X, Xing L, Yu J, Zheng M. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy. Oncotarget. 2016 Jul 26;7(30):48607-48613. doi: 10.18632/oncotarget.9495.
Landis-Piwowar K, Chen D, Foldes R, Chan TH, Dou QP. Novel epigallocatechin gallate analogs as potential anticancer agents: a patent review (2009 - present). Expert Opin Ther Pat. 2013 Feb;23(2):189-202. doi: 10.1517/13543776.2013.743993. Epub 2012 Dec 12.
Xu FW, Lv YL, Zhong YF, Xue YN, Wang Y, Zhang LY, Hu X, Tan WQ. Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review. Molecules. 2021 Oct 11;26(20):6123. doi: 10.3390/molecules26206123.
Hwang Y, Chang B, Kim T, Kim S. Ameliorative effects of green tea extract from tannase digests on house dust mite antigen-induced atopic dermatitis-like lesions in NC/Nga mice. Arch Dermatol Res. 2019 Mar;311(2):109-120. doi: 10.1007/s00403-018-01886-6. Epub 2019 Jan 7.
Chamcheu JC, Siddiqui IA, Adhami VM, Esnault S, Bharali DJ, Babatunde AS, Adame S, Massey RJ, Wood GS, Longley BJ, Mousa SA, Mukhtar H. Chitosan-based nanoformulated (-)-epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. Int J Nanomedicine. 2018 Jul 20;13:4189-4206. doi: 10.2147/IJN.S165966. eCollection 2018.
Wang ZT, Xue Y, Sun H, Zhang Z, Tang ZJ, Liu SB, Cai WM. Effect of tea polyphenols on the oral and intravenous pharmacokinetics of ticagrelor in rats and its in vitro metabolism. J Food Sci. 2020 Apr;85(4):1285-1291. doi: 10.1111/1750-3841.15096. Epub 2020 Mar 10.
Ge J, Tan BX, Chen Y, Yang L, Peng XC, Li HZ, Lin HJ, Zhao Y, Wei M, Cheng K, Li LH, Dong H, Gao F, He JP, Wu Y, Qiu M, Zhao YL, Su JM, Hou JM, Liu JY. Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability. J Mol Med (Berl). 2011 Jun;89(6):595-602. doi: 10.1007/s00109-011-0737-3. Epub 2011 Feb 18.
Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, Petasis NA, Chen TC, Schonthal AH. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood. 2009 Jun 4;113(23):5927-37. doi: 10.1182/blood-2008-07-171389. Epub 2009 Feb 3.
Yen C, Zhao F, Yu Z, Zhu X, Li CG. Interactions Between Natural Products and Tamoxifen in Breast Cancer: A Comprehensive Literature Review. Front Pharmacol. 2022 Jun 2;13:847113. doi: 10.3389/fphar.2022.847113. eCollection 2022.
Esmaeili MA. Combination of siRNA-directed gene silencing with epigallocatechin-3-gallate (EGCG) reverses drug resistance in human breast cancer cells. J Chem Biol. 2015 Aug 8;9(1):41-52. doi: 10.1007/s12154-015-0144-2. eCollection 2016 Jan.
La X, Zhang L, Li Z, Li H, Yang Y. (-)-Epigallocatechin Gallate (EGCG) Enhances the Sensitivity of Colorectal Cancer Cells to 5-FU by Inhibiting GRP78/NF-kappaB/miR-155-5p/MDR1 Pathway. J Agric Food Chem. 2019 Mar 6;67(9):2510-2518. doi: 10.1021/acs.jafc.8b06665. Epub 2019 Feb 20.
Chang CM, Chang PY, Tu MG, Lu CC, Kuo SC, Amagaya S, Lee CY, Jao HY, Chen MY, Yang JS. Epigallocatechin gallate sensitizes CAL-27 human oral squamous cell carcinoma cells to the anti-metastatic effects of gefitinib (Iressa) via synergistic suppression of epidermal growth factor receptor and matrix metalloproteinase-2. Oncol Rep. 2012 Nov;28(5):1799-807. doi: 10.3892/or.2012.1991. Epub 2012 Aug 24.
Zhou H, Fu LX, Li L, Chen YY, Zhu HQ, Zhou JL, Lv MX, Gan RZ, Zhang XX, Liang G. The epigallocatechin gallate derivative Y6 reduces the cardiotoxicity and enhances the efficacy of daunorubicin against human hepatocellular carcinoma by inhibiting carbonyl reductase 1 expression. J Ethnopharmacol. 2020 Oct 28;261:113118. doi: 10.1016/j.jep.2020.113118. Epub 2020 Jul 1.
Lang M, Henson R, Braconi C, Patel T. Epigallocatechin-gallate modulates chemotherapy-induced apoptosis in human cholangiocarcinoma cells. Liver Int. 2009 May;29(5):670-7. doi: 10.1111/j.1478-3231.2009.01984.x. Epub 2009 Feb 17.
Shervington A, Pawar V, Menon S, Thakkar D, Patel R. The sensitization of glioma cells to cisplatin and tamoxifen by the use of catechin. Mol Biol Rep. 2009 May;36(5):1181-6. doi: 10.1007/s11033-008-9295-3. Epub 2008 Jun 26.
Lee TC, Cheng IC, Shue JJ, Wang TC. Cytotoxicity of arsenic trioxide is enhanced by (-)-epigallocatechin-3-gallate via suppression of ferritin in cancer cells. Toxicol Appl Pharmacol. 2011 Jan 1;250(1):69-77. doi: 10.1016/j.taap.2010.10.005. Epub 2010 Oct 13.
Sanchez Y, Calle C, de Blas E, Aller P. Modulation of arsenic trioxide-induced apoptosis by genistein and functionally related agents in U937 human leukaemia cells. Regulation by ROS and mitogen-activated protein kinases. Chem Biol Interact. 2009 Nov 10;182(1):37-44. doi: 10.1016/j.cbi.2009.08.015. Epub 2009 Aug 29.
Wang L, Li P, Feng K. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur J Med Chem. 2023 Mar 15;250:115197. doi: 10.1016/j.ejmech.2023.115197. Epub 2023 Feb 10.
Zhao H, Zhu W, Xie P, Li H, Zhang X, Sun X, Yu J, Xing L. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother Oncol. 2014 Jan;110(1):132-6. doi: 10.1016/j.radonc.2013.10.014. Epub 2014 Jan 17.
Shin DM, Nannapaneni S, Patel MR, Shi Q, Liu Y, Chen Z, Chen AY, El-Deiry MW, Beitler JJ, Steuer CE, Roser SM, Klein AM, Owonikoko TK, Ramalingam SS, Khuri FR, Chen ZG, Saba NF. Phase Ib Study of Chemoprevention with Green Tea Polyphenon E and Erlotinib in Patients with Advanced Premalignant Lesions (APL) of the Head and Neck. Clin Cancer Res. 2020 Nov 15;26(22):5860-5868. doi: 10.1158/1078-0432.CCR-20-2276. Epub 2020 Sep 17.
Zhu W, Mei H, Jia L, Zhao H, Li X, Meng X, Zhao X, Xing L, Yu J. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients: a prospective, non-randomised, phase 1 trial. Invest New Drugs. 2020 Aug;38(4):1129-1136. doi: 10.1007/s10637-019-00871-8. Epub 2019 Nov 7.
Zhang G, Wang Y, Zhang Y, Wan X, Li J, Liu K, Wang F, Liu K, Liu Q, Yang C, Yu P, Huang Y, Wang S, Jiang P, Qu Z, Luan J, Duan H, Zhang L, Hou A, Jin S, Hsieh TC, Wu E. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr Mol Med. 2012 Feb;12(2):163-76. doi: 10.2174/156652412798889063.
Li X, Xing L, Zhang Y, Xie P, Zhu W, Meng X, Wang Y, Kong L, Zhao H, Yu J. Phase II Trial of Epigallocatechin-3-Gallate in Acute Radiation-Induced Esophagitis for Esophagus Cancer. J Med Food. 2020 Jan;23(1):43-49. doi: 10.1089/jmf.2019.4445. Epub 2019 Nov 20.
Zhao H, Xie P, Li X, Zhu W, Sun X, Sun X, Chen X, Xing L, Yu J. A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiother Oncol. 2015 Mar;114(3):351-6. doi: 10.1016/j.radonc.2015.02.014. Epub 2015 Mar 10.
Lu H, Xie L, Guo L, Gu X, Zhu R, Yang Y, Tang F, Li M, Liu C, Wang D, Li M, Tian Y, Cai S. EGCG protects intestines of mice and pelvic cancer patients against radiation injury via the gut microbiota/D-tagatose/AMPK axis. Radiother Oncol. 2025 Jan;202:110608. doi: 10.1016/j.radonc.2024.110608. Epub 2024 Oct 31.
Kang Y, Xiong Y, Lu B, Wang Y, Zhang D, Feng J, Chen L, Zhang Z. Application of In Situ Mucoadhesive Hydrogel with Anti-Inflammatory and Pro-Repairing Dual Properties for the Treatment of Chemotherapy-Induced Oral Mucositis. ACS Appl Mater Interfaces. 2024 Jul 17;16(28):35949-35963. doi: 10.1021/acsami.4c03217. Epub 2024 Jul 6.
Kapoor MP, Sugita M, Fukuzawa Y, Timm D, Ozeki M, Okubo T. Green Tea Catechin Association with Ultraviolet Radiation-Induced Erythema: A Systematic Review and Meta-Analysis. Molecules. 2021 Jun 17;26(12):3702. doi: 10.3390/molecules26123702.
Najera N, Ortiz-Flores M, Perez-Duran J, Reyes-Munoz E, Romo-Yanez J, Ortiz-Luna G, Villarreal F, Meaney E, Ceballos G, Montoya-Estrada A. Improving Cardiovascular Risk in Postmenopausal Women with an (-)-Epicatechin-Based Nutraceutical: A Randomly Assigned, Double-Blind vs. Placebo, Proof-of-Concept Trial. J Clin Med. 2023 Dec 29;13(1):195. doi: 10.3390/jcm13010195.
Gutierrez-Salmean G, Meaney E, Lanaspa MA, Cicerchi C, Johnson RJ, Dugar S, Taub P, Ramirez-Sanchez I, Villarreal F, Schreiner G, Ceballos G. A randomized, placebo-controlled, double-blind study on the effects of (-)-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. Int J Cardiol. 2016 Nov 15;223:500-506. doi: 10.1016/j.ijcard.2016.08.158. Epub 2016 Aug 8.
Zhao H, Zhu W, Zhao X, Li X, Zhou Z, Zheng M, Meng X, Kong L, Zhang S, He D, Xing L, Yu J. Efficacy of Epigallocatechin-3-Gallate in Preventing Dermatitis in Patients With Breast Cancer Receiving Postoperative Radiotherapy: A Double-Blind, Placebo-Controlled, Phase 2 Randomized Clinical Trial. JAMA Dermatol. 2022 Jul 1;158(7):779-786. doi: 10.1001/jamadermatol.2022.1736.
Xie J, Jia L, Xie P, Yin X, Zhu W, Zhao H, Wang X, Meng X, Xing L, Zhao H, Li X. Efficacy and safety of epigallocatechin-3-gallate in treatment acute severe dermatitis in patients with cancer receiving radiotherapy: a phase I clinical trial. Sci Rep. 2023 Aug 24;13(1):13865. doi: 10.1038/s41598-023-40881-4.
Arts IC, Hollman PC, Kromhout D. Chocolate as a source of tea flavonoids. Lancet. 1999 Aug 7;354(9177):488. doi: 10.1016/S0140-6736(99)02267-9.
Xicota L, Rodriguez-Morato J, Dierssen M, de la Torre R. Potential Role of (-)-Epigallocatechin-3-Gallate (EGCG) in the Secondary Prevention of Alzheimer Disease. Curr Drug Targets. 2017;18(2):174-195. doi: 10.2174/1389450116666150825113655.
Fernando WMADB, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN. Diabetes and Alzheimer's Disease: Can Tea Phytochemicals Play a Role in Prevention? J Alzheimers Dis. 2017;59(2):481-501. doi: 10.3233/JAD-161200.
Mandel S, Maor G, Youdim MB. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci. 2004;24(3):401-16. doi: 10.1385/JMN:24:3:401.
Jiang S, Huang C, Zheng G, Yi W, Wu B, Tang J, Liu X, Huang B, Wu D, Yan T, Li M, Wan C, Cai Y. EGCG Inhibits Proliferation and Induces Apoptosis Through Downregulation of SIRT1 in Nasopharyngeal Carcinoma Cells. Front Nutr. 2022 Apr 25;9:851972. doi: 10.3389/fnut.2022.851972. eCollection 2022.
Cai S, Xie LW, Xu JY, Zhou H, Yang C, Tang LF, Tian Y, Li M. (-)-Epigallocatechin-3-Gallate (EGCG) Modulates the Composition of the Gut Microbiota to Protect Against Radiation-Induced Intestinal Injury in Mice. Front Oncol. 2022 Apr 11;12:848107. doi: 10.3389/fonc.2022.848107. eCollection 2022.
Kim SR, Seong KJ, Kim WJ, Jung JY. Epigallocatechin Gallate Protects against Hypoxia-Induced Inflammation in Microglia via NF-kappaB Suppression and Nrf-2/HO-1 Activation. Int J Mol Sci. 2022 Apr 4;23(7):4004. doi: 10.3390/ijms23074004.
Spencer JP, Schroeter H, Kuhnle G, Srai SK, Tyrrell RM, Hahn U, Rice-Evans C. Epicatechin and its in vivo metabolite, 3'-O-methyl epicatechin, protect human fibroblasts from oxidative-stress-induced cell death involving caspase-3 activation. Biochem J. 2001 Mar 15;354(Pt 3):493-500. doi: 10.1042/0264-6021:3540493.
Suzuki J, Ogawa M, Futamatsu H, Kosuge H, Sagesaka YM, Isobe M. Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail. 2007 Feb;9(2):152-9. doi: 10.1016/j.ejheart.2006.05.007. Epub 2006 Jul 10.
Bhardwaj P, Khanna D. Green tea catechins: defensive role in cardiovascular disorders. Chin J Nat Med. 2013 Jul;11(4):345-53. doi: 10.1016/S1875-5364(13)60051-5.
Schiffrin EL. A critical review of the role of endothelial factors in the pathogenesis of hypertension. J Cardiovasc Pharmacol. 2001 Nov;38 Suppl 2:S3-6. doi: 10.1097/00005344-200111002-00002.
Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004 Jul;93(1):105-13. doi: 10.1093/bja/aeh163. Epub 2004 Apr 30.
Hu B, Pan C, Sun Y, Hou Z, Ye H, Zeng X. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. J Agric Food Chem. 2008 Aug 27;56(16):7451-8. doi: 10.1021/jf801111c. Epub 2008 Jul 16.
Rashidinejad A, Birch EJ, Everett DW. A novel functional full-fat hard cheese containing liposomal nanoencapsulated green tea catechins: manufacture and recovery following simulated digestion. Food Funct. 2016 Jul 13;7(7):3283-94. doi: 10.1039/c6fo00354k.
Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 2014 Aug 1;156:176-83. doi: 10.1016/j.foodchem.2014.01.115. Epub 2014 Feb 6.
Rashidinejad A, Boostani S, Babazadeh A, Rehman A, Rezaei A, Akbari-Alavijeh S, Shaddel R, Jafari SM. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res Int. 2021 Apr;142:110186. doi: 10.1016/j.foodres.2021.110186. Epub 2021 Feb 1.
Wang R, Zhou W, Wen RA. Kinetic study of the thermal stability of tea catechins in aqueous systems using a microwave reactor. J Agric Food Chem. 2006 Aug 9;54(16):5924-32. doi: 10.1021/jf0611419.
Zeng J, Xu H, Cai Y, Xuan Y, Liu J, Gao Y, Luan Q. The Effect of Ultrasound, Oxygen and Sunlight on the Stability of (-)-Epigallocatechin Gallate. Molecules. 2018 Sep 18;23(9):2394. doi: 10.3390/molecules23092394.
Feng WY. Metabolism of green tea catechins: an overview. Curr Drug Metab. 2006 Oct;7(7):755-809. doi: 10.2174/138920006778520552.
Barnett CF, Moreno-Ulloa A, Shiva S, Ramirez-Sanchez I, Taub PR, Su Y, Ceballos G, Dugar S, Schreiner G, Villarreal F. Pharmacokinetic, partial pharmacodynamic and initial safety analysis of (-)-epicatechin in healthy volunteers. Food Funct. 2015 Mar;6(3):824-33. doi: 10.1039/c4fo00596a.
Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharmacol. 2006 Sep 28;72(7):850-9. doi: 10.1016/j.bcp.2006.06.021. Epub 2006 Aug 4.
Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 1990;186:343-55. doi: 10.1016/0076-6879(90)86128-i. No abstract available.
Fan FY, Sang LX, Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules. 2017 Mar 19;22(3):484. doi: 10.3390/molecules22030484.
Fraga CG, Galleano M, Verstraeten SV, Oteiza PI. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med. 2010 Dec;31(6):435-45. doi: 10.1016/j.mam.2010.09.006. Epub 2010 Sep 18.
Babu PV, Liu D. Green tea catechins and cardiovascular health: an update. Curr Med Chem. 2008;15(18):1840-50. doi: 10.2174/092986708785132979.
Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea--a review. J Am Coll Nutr. 2006 Apr;25(2):79-99. doi: 10.1080/07315724.2006.10719518.
Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan-Neagoe I. The relationship between the structure and biological actions of green tea catechins. Food Chem. 2013 Dec 1;141(3):3282-9. doi: 10.1016/j.foodchem.2013.05.122. Epub 2013 Jun 4.
Bernatoniene J, Kopustinskiene DM. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules. 2018 Apr 20;23(4):965. doi: 10.3390/molecules23040965.
Elbaz HA, Lee I, Antwih DA, Liu J, Huttemann M, Zielske SP. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation. PLoS One. 2014 Feb 6;9(2):e88322. doi: 10.1371/journal.pone.0088322. eCollection 2014.
Parshad R, Sanford KK, Price FM, Steele VE, Tarone RE, Kelloff GJ, Boone CW. Protective action of plant polyphenols on radiation-induced chromatid breaks in cultured human cells. Anticancer Res. 1998 Sep-Oct;18(5A):3263-6.
Branda RF, Blickensderfer DB. Folate deficiency increases genetic damage caused by alkylating agents and gamma-irradiation in Chinese hamster ovary cells. Cancer Res. 1993 Nov 15;53(22):5401-8.
Umegaki K, Uramoto H, Suzuki J, Esashi T. Feeding mice palm carotene prevents DNA damage in bone marrow and reduction of peripheral leukocyte counts, and enhances survival following X-ray irradiation. Carcinogenesis. 1997 Oct;18(10):1943-7. doi: 10.1093/carcin/18.10.1943.
Harapanhalli RS, Yaghmai V, Giuliani D, Howell RW, Rao DV. Antioxidant effects of vitamin C in mice following X-irradiation. Res Commun Mol Pathol Pharmacol. 1996 Dec;94(3):271-87.
Yoshimura M, Kashiba M, Oka J, Sugisawa A, Umegaki K. Vitamin E prevents increase in oxidative damage to lipids and DNA in liver of ODS rats given total body X-ray irradiation. Free Radic Res. 2002 Jan;36(1):107-12. doi: 10.1080/10715760210166.
MacBride SK, Wells ME, Hornsby C, Sharp L, Finnila K, Downie L. A case study to evaluate a new soft silicone dressing, Mepilex Lite, for patients with radiation skin reactions. Cancer Nurs. 2008 Jan-Feb;31(1):E8-14. doi: 10.1097/01.NCC.0000305680.06143.39.
Shin YS, Shin HA, Kang SU, Kim JH, Oh YT, Park KH, Kim CH. Effect of epicatechin against radiation-induced oral mucositis: in vitro and in vivo study. PLoS One. 2013 Jul 18;8(7):e69151. doi: 10.1371/journal.pone.0069151. Print 2013.
Hoeller U, Tribius S, Kuhlmey A, Grader K, Fehlauer F, Alberti W. Increasing the rate of late toxicity by changing the score? A comparison of RTOG/EORTC and LENT/SOMA scores. Int J Radiat Oncol Biol Phys. 2003 Mar 15;55(4):1013-8. doi: 10.1016/s0360-3016(02)04202-5.
Gupta T, Agarwal J, Jain S, Phurailatpam R, Kannan S, Ghosh-Laskar S, Murthy V, Budrukkar A, Dinshaw K, Prabhash K, Chaturvedi P, D'Cruz A. Three-dimensional conformal radiotherapy (3D-CRT) versus intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the head and neck: a randomized controlled trial. Radiother Oncol. 2012 Sep;104(3):343-8. doi: 10.1016/j.radonc.2012.07.001. Epub 2012 Jul 30.
Xiong H, Liao Z, Liu Z, Xu T, Wang Q, Liu H, Komaki R, Gomez D, Wang LE, Wei Q. ATM polymorphisms predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys. 2013 Mar 15;85(4):1066-73. doi: 10.1016/j.ijrobp.2012.09.024. Epub 2012 Nov 12.
Cheuk IW, Yip SP, Kwong DL, Wu VW. Association of XRCC1 and XRCC3 gene haplotypes with the development of radiation-induced fibrosis in patients with nasopharyngeal carcinoma. Mol Clin Oncol. 2014 Jul;2(4):553-558. doi: 10.3892/mco.2014.276. Epub 2014 Apr 14.
Bray FN, Simmons BJ, Wolfson AH, Nouri K. Acute and Chronic Cutaneous Reactions to Ionizing Radiation Therapy. Dermatol Ther (Heidelb). 2016 Jun;6(2):185-206. doi: 10.1007/s13555-016-0120-y. Epub 2016 Jun 1.
Suarez EM, Knackstedt RJ, Jenrette JM. Significant fibrosis after radiation therapy in a patient with Marfan syndrome. Radiat Oncol J. 2014 Sep;32(3):208-12. doi: 10.3857/roj.2014.32.3.208. Epub 2014 Sep 30.
Nevens D, Duprez F, Daisne JF, Laenen A, De Neve W, Nuyts S. Radiotherapy induced dermatitis is a strong predictor for late fibrosis in head and neck cancer. The development of a predictive model for late fibrosis. Radiother Oncol. 2017 Feb;122(2):212-216. doi: 10.1016/j.radonc.2016.08.013. Epub 2016 Sep 20.
Hamada K, Fujibuchi T, Arakawa H, Yokoyama Y, Yoshida N, Ohura H, Kunitake N, Masuda M, Honda T, Tokuda S, Sasaki M. A novel approach to predict acute radiation dermatitis in patients with head and neck cancer using a model based on Bayesian probability. Phys Med. 2023 Dec;116:103181. doi: 10.1016/j.ejmp.2023.103181. Epub 2023 Nov 24.
Lee TF, Liu YH, Chang CH, Chiu CL, Lin CH, Shao JC, Yen YC, Lin GZ, Yang J, Tseng CD, Fang FM, Chao PJ, Lee SH. Development of a risk prediction model for radiation dermatitis following proton radiotherapy in head and neck cancer using ensemble machine learning. Radiat Oncol. 2024 Jun 24;19(1):78. doi: 10.1186/s13014-024-02470-1.
Bontempo PSM, Meneses AG, Ciol MA, Ferreira EB, Reis PEDD. Instruments and scales for the evaluation of acute radiation dermatitis: A systematic review. Crit Rev Oncol Hematol. 2023 Nov;191:104116. doi: 10.1016/j.critrevonc.2023.104116. Epub 2023 Aug 28.
Noble-Adams R. Radiation-induced skin reactions. 2: Development of a measurement tool. Br J Nurs. 1999 Oct 14-27;8(18):1208-11. doi: 10.12968/bjon.1999.8.18.6490.
Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995 Mar 30;31(5):1341-6. doi: 10.1016/0360-3016(95)00060-C. No abstract available.
Huang CJ, Hou MF, Luo KH, Wei SY, Huang MY, Su SJ, Kuo HY, Yuan SS, Chen GS, Hu SC, Chuang HY. RTOG, CTCAE and WHO criteria for acute radiation dermatitis correlate with cutaneous blood flow measurements. Breast. 2015 Jun;24(3):230-6. doi: 10.1016/j.breast.2015.01.008. Epub 2015 Mar 14.
Berthelet E, Truong PT, Musso K, Grant V, Kwan W, Moravan V, Patterson K, Olivotto IA. Preliminary reliability and validity testing of a new Skin Toxicity Assessment Tool (STAT) in breast cancer patients undergoing radiotherapy. Am J Clin Oncol. 2004 Dec;27(6):626-31. doi: 10.1097/01.coc.0000138965.97476.0f.
Aguiar BRL, Ferreira EB, Normando AGC, Mazzeu JF, Assad DX, Guerra ENS, Reis PEDD. Single nucleotide polymorphisms to predict acute radiation dermatitis in breast cancer patients: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 2022 May;173:103651. doi: 10.1016/j.critrevonc.2022.103651. Epub 2022 Mar 15.
Yu J, Huang Y, Liu L, Wang J, Yin J, Huang L, Chen S, Li J, Yuan H, Yang G, Liu W, Wang H, Pei Q, Guo C. Genetic polymorphisms of Wnt/beta-catenin pathway genes are associated with the efficacy and toxicities of radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget. 2016 Dec 13;7(50):82528-82537. doi: 10.18632/oncotarget.12754.
Mumbrekar KD, Bola Sadashiva SR, Kabekkodu SP, Fernandes DJ, Vadhiraja BM, Suga T, Shoji Y, Nakayama F, Imai T, Satyamoorthy K. Genetic Variants in CD44 and MAT1A Confer Susceptibility to Acute Skin Reaction in Breast Cancer Patients Undergoing Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017 Jan 1;97(1):118-127. doi: 10.1016/j.ijrobp.2016.09.017. Epub 2016 Sep 20.
Isomura M, Oya N, Tachiiri S, Kaneyasu Y, Nishimura Y, Akimoto T, Hareyama M, Sugita T, Mitsuhashi N, Yamashita T, Aoki M, Sai H, Hirokawa Y, Sakata K, Karasawa K, Tomida A, Tsuruo T, Miki Y, Noda T, Hiraoka M. IL12RB2 and ABCA1 genes are associated with susceptibility to radiation dermatitis. Clin Cancer Res. 2008 Oct 15;14(20):6683-9. doi: 10.1158/1078-0432.CCR-07-4389.
Aguiar BRL, Ferreira EB, Normando AGC, Dias SDS, Guerra ENS, Reis PED. Potential Single Nucleotide Polymorphisms markers for radiation dermatitis in head and neck cancer patients: a meta-analysis. Strahlenther Onkol. 2024 Jul;200(7):568-582. doi: 10.1007/s00066-024-02237-3. Epub 2024 Apr 26.
De Langhe S, Mulliez T, Veldeman L, Remouchamps V, van Greveling A, Gilsoul M, De Schepper E, De Ruyck K, De Neve W, Thierens H. Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy. BMC Cancer. 2014 Sep 25;14:711. doi: 10.1186/1471-2407-14-711.
Ramia P, Bodgi L, Mahmoud D, Mohammad MA, Youssef B, Kopek N, Al-Shamsi H, Dagher M, Abu-Gheida I. Radiation-Induced Fibrosis in Patients with Head and Neck Cancer: A Review of Pathogenesis and Clinical Outcomes. Clin Med Insights Oncol. 2022 Jan 30;16:11795549211036898. doi: 10.1177/11795549211036898. eCollection 2022.
Gosselin T, Ginex PK, Backler C, Bruce SD, Hutton A, Marquez CM, McGee LA, Shaftic AM, Suarez LV, Moriarty KA, Maloney C, Vrabel M, Morgan RL. ONS Guidelines for Cancer Treatment-Related Radiodermatitis. Oncol Nurs Forum. 2020 Nov 1;47(6):654-670. doi: 10.1188/20.ONF.654-670.
Dorr W. Skin and other reactions to radiotherapy--clinical presentation and radiobiology of skin reactions. Front Radiat Ther Oncol. 2006;39:96-101. doi: 10.1159/000090854. No abstract available.
Kyei KA, Daniels J, Pratt-Ainooson F, Anim-Sampong S, Nkansah EO, Amoabeng KA, Antwi WK. Incidence and severity of acute radiation induced toxicities among breast cancer patients treated with adjuvant radiotherapy at a major cancer treatment center in Ghana. Transl Oncol. 2024 Sep;47:102032. doi: 10.1016/j.tranon.2024.102032. Epub 2024 Jun 29.
Eggert MC, Yu NY, Rades D. Radiation Dermatitis and Pneumonitis in Patients Irradiated for Breast Cancer. In Vivo. 2023 Nov-Dec;37(6):2654-2661. doi: 10.21873/invivo.13374.
Bontempo PSM, Ciol MA, Meneses AG, Simino GPR, Ferreira EB, Reis PEDD. Acute radiodermatitis in cancer patients: incidence and severity estimates. Rev Esc Enferm USP. 2021 Apr 16;55:e03676. doi: 10.1590/S1980-220X2019021703676. eCollection 2021. English, Portuguese.
Fijardo M, Kwan JYY, Bissey PA, Citrin DE, Yip KW, Liu FF. The clinical manifestations and molecular pathogenesis of radiation fibrosis. EBioMedicine. 2024 May;103:105089. doi: 10.1016/j.ebiom.2024.105089. Epub 2024 Apr 5.
Xie Y, Hu T, Chen R, Chang H, Wang Q, Cheng J. Predicting acute radiation dermatitis in breast cancer: a prospective cohort study. BMC Cancer. 2023 Jun 12;23(1):537. doi: 10.1186/s12885-023-10821-6.
Kawamura M, Yoshimura M, Asada H, Nakamura M, Matsuo Y, Mizowaki T. A scoring system predicting acute radiation dermatitis in patients with head and neck cancer treated with intensity-modulated radiotherapy. Radiat Oncol. 2019 Jan 21;14(1):14. doi: 10.1186/s13014-019-1215-2.
Tenorio C, de la Mata D, Leyva JAF, Poitevin-Chacon A, Queijeiro MV, Gutierrez GR, Nogueda JC, Cons LCD, Hernandez YB, Sanchez DR, Cruz AAS, Guardado GN, Tomasena MI, Ortiz S, Del Bosque MAS, Garzon LAC, Puch AES, Retif RP, Arceo PRL, Lopez LHB, Baldi CMT. Mexican radiationdermatitis management consensus. Rep Pract Oncol Radiother. 2022 Oct 31;27(5):914-926. doi: 10.5603/RPOR.a2022.0101. eCollection 2022.
Spalek M. Chronic radiation-induced dermatitis: challenges and solutions. Clin Cosmet Investig Dermatol. 2016 Dec 9;9:473-482. doi: 10.2147/CCID.S94320. eCollection 2016.
Wei J, Meng L, Hou X, Qu C, Wang B, Xin Y, Jiang X. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res. 2018 Dec 21;11:167-177. doi: 10.2147/CMAR.S188655. eCollection 2019.
Singh M, Alavi A, Wong R, Akita S. Radiodermatitis: A Review of Our Current Understanding. Am J Clin Dermatol. 2016 Jun;17(3):277-92. doi: 10.1007/s40257-016-0186-4.
Behroozian T, Goldshtein D, Ryan Wolf J, van den Hurk C, Finkelstein S, Lam H, Patel P, Kanee L, Lee SF, Chan AW, Wong HCY, Caini S, Mahal S, Kennedy S, Chow E, Bonomo P; Multinational Association of Supportive Care in Cancer (MASCC) Oncodermatology Study Group Radiation Dermatitis Guidelines Working Group. MASCC clinical practice guidelines for the prevention and management of acute radiation dermatitis: part 1) systematic review. EClinicalMedicine. 2023 Mar 27;58:101886. doi: 10.1016/j.eclinm.2023.101886. eCollection 2023 Apr.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CI/HRAEB/024/2025
Identifier Type: OTHER
Identifier Source: secondary_id
CEI-038-2025
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.