Functional Hemodynamic Assessment in Shocked Patients in the Pediatric Intensive Care Unit
NCT ID: NCT06720493
Last Updated: 2024-12-06
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
NOT_YET_RECRUITING
129 participants
OBSERVATIONAL
2025-01-01
2026-04-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Appropriate fluid resuscitation is crucial in the management of children with shock (5). The current American College of Critical Care Medicine (ACCM), Pediatric Advanced Life Support (PALS), and Surviving Sepsis Campaign Guidelines have focused on the implementation of early and goal-directed fluid therapy (6, 7). Many studies have shown that mortality in pediatric patients with septic shock has been significantly decreased with aggressive fluid administration (8, 9). However, overzealous fluid administration can also lead to fluid overload (FO) and has been associated with complications such as acute respiratory distress syndrome (ARDS), which results in poor outcomes including increased hospital length of stay and mechanical ventilator days (10-13). As a result, in the recent decades, a more restrictive approach for fluid resuscitation has emerged in adults and children vs. the usual aggressive fluid therapy (14-16).
Traditional use of subjective findings such as pulse volume, capillary refill time, and clinical signs of hydration status to predict fluid responsiveness (FR) has been proven to be unreliable (17, 18).
While there is a growing body of the literature on the use of non-invasive devices for objective hemodynamic monitoring, there is a paucity of the literature related to the assessment of FR using these measures in children with shock (19).
Noninvasive monitoring techniques for the assessment of various cardiovascular parameters are increasingly accepted as the current medical practice. Electrical cardiometry (EC) is one such method for the determination of stroke volume (SV), cardiac output (CO), and other hemodynamic parameters and is based on changes in electrical conductivity within the thorax (20).
ICON® based on Electrical Cardiometry™ (EC) technology (Osypka Medical GmbH, Berlin, Germany) is a noninvasive, continuous hemodynamic monitoring device. It determines the CO by measuring variations in the thoracic electrical bioimpedance with phases of a cardiac cycle. During diastole, the erythrocytes in the aorta assume a random orientation (more impedance), while during systole the pulsatile blood flow causes them to align parallel to both the blood flow and the electrical current (less impedance). The magnitude of the maximum rate of change of impedance with a change in the orientation of erythrocytes gives a peak aortic blood flow acceleration and stroke volume (21).
Cardiac index (CI), systemic vascular resistance index (SVRI), cardiac contractility, stroke volume variation (SVV) and thoracic fluid content (TFC) are derived using complex mathematical formulae and patented algorithms. The accuracy and the clinical utility of electrocardiometry have been validated against other measures of CO like direct Fick' s method, thermodilution, and transthoracic and transesophageal echocardiography in a wide spectrum of patient conditions and populations across all ages, including critically ill patients, intraoperative settings, cardiac catheterization, and congenital heart diseases (22-26).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
echocardiographic assessment of shocked patients to fluid administration
hemodynamic assessment of pediatric shocked patients using different modalities like echocardiography and electrical cardiometry
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Critically ill child who needs continuous hemodynamic monitoring in PICU
Exclusion Criteria
* Postoperative patients
1 Month
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Assiut University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Osman Gamal Hassan
Functional hemodynamic assessment in shocked patients in the Pediatric Intensive Care Unit
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018 Jun;44(6):925-928. doi: 10.1007/s00134-018-5085-0. Epub 2018 Apr 19. No abstract available.
Lee SJ, Ramar K, Park JG, Gajic O, Li G, Kashyap R. Increased fluid administration in the first three hours of sepsis resuscitation is associated with reduced mortality: a retrospective cohort study. Chest. 2014 Oct;146(4):908-915. doi: 10.1378/chest.13-2702.
Davis AL, Carcillo JA, Aneja RK, Deymann AJ, Lin JC, Nguyen TC, Okhuysen-Cawley RS, Relvas MS, Rozenfeld RA, Skippen PW, Stojadinovic BJ, Williams EA, Yeh TS, Balamuth F, Brierley J, de Caen AR, Cheifetz IM, Choong K, Conway E Jr, Cornell T, Doctor A, Dugas MA, Feldman JD, Fitzgerald JC, Flori HR, Fortenberry JD, Graciano AL, Greenwald BM, Hall MW, Han YY, Hernan LJ, Irazuzta JE, Iselin E, van der Jagt EW, Jeffries HE, Kache S, Katyal C, Kissoon N, Kon AA, Kutko MC, MacLaren G, Maul T, Mehta R, Odetola F, Parbuoni K, Paul R, Peters MJ, Ranjit S, Reuter-Rice KE, Schnitzler EJ, Scott HF, Torres A Jr, Weingarten-Arams J, Weiss SL, Zimmerman JJ, Zuckerberg AL. American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Crit Care Med. 2017 Jun;45(6):1061-1093. doi: 10.1097/CCM.0000000000002425.
Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo A, Singhi SC, Erickson S, Roy JA, Bush JL, Nadkarni VM, Thomas NJ; Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015 May 15;191(10):1147-57. doi: 10.1164/rccm.201412-2323OC.
de Souza DC, Shieh HH, Barreira ER, Ventura AM, Bousso A, Troster EJ; LAPSES Group. Epidemiology of Sepsis in Children Admitted to PICUs in South America. Pediatr Crit Care Med. 2016 Aug;17(8):727-34. doi: 10.1097/PCC.0000000000000847.
Martin K, Weiss SL. Initial resuscitation and management of pediatric septic shock. Minerva Pediatr. 2015 Apr;67(2):141-58. Epub 2015 Jan 21.
Mendelson J. Emergency Department Management of Pediatric Shock. Emerg Med Clin North Am. 2018 May;36(2):427-440. doi: 10.1016/j.emc.2017.12.010. Epub 2018 Feb 10.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
assessment of shocked patients
Identifier Type: -
Identifier Source: org_study_id