Home-Combo: an Online Home-based Combined Exercise Intervention for Women With Breast Cancer
NCT ID: NCT06429189
Last Updated: 2024-06-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
NOT_YET_RECRUITING
NA
98 participants
INTERVENTIONAL
2024-11-10
2025-10-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Background. Chemotherapy drugs carry many side effects that may hinder the functional performance of women with breast cancer (BC). Chemoresistance can lead to treatment failure. A relative dose intensity of chemotherapy \<85% is associated with a worse diagnosis and lower treatment efficacy. Exercise may modulate treatment response through its effects on the tumor microenvironment and treatment tolerability. The need for a pleasant and sustainable exercise practice is important, considering the psychological and physiological stress that accompanies women with a BC diagnosis during treatment. Studies investigating the effects of exercise interventions on chemotherapy completion rates are needed.
Purpose. This study will be a 2-arm pragmatic randomized controlled trial, Home-Combo, which will target Portuguese women with a breast cancer diagnosis undergoing either neo-adjuvant or adjuvant chemotherapy. The Home-Combo study primarily aims to investigate the effects of a structured, supervised, home-based combined exercise intervention with self-selected intensity, conducted across the chemotherapy treatment period, on the chemotherapy completion rates of women with BC. Secondly, this study intends to analyze the impact of this intervention on functional performance, body composition, PA levels, and quality of life. A 3-month follow-up will be performed to investigate short-term outcomes and active lifestyle sustainability post-intervention.
Methods. A 2-arm randomized controlled trial will be implemented in a real-world exercise setting to compare an online structured and supervised group aerobic and strength exercise intervention with an active control group during chemotherapy treatments. The study recruitment goal is 98 women with a BC diagnosis stage I-III who are scheduled to have neoadjuvant or adjuvant chemotherapy. Outcome measures will be obtained at baseline, mid-treatment (≈3 months), post-intervention (≈6 months), and 3-month follow-up. A mediation analysis will also be conducted.
Hypothesis 1: Women in the intervention will have a better completion rate than those in the control group.
Hypothesis 2: Women in the intervention will present better functional performance, body composition, PA levels, and quality of life than the control group.
Hypothesis 3: In the post-intervention period, women in the intervention group will maintain a more physically active lifestyle than women in the control group.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Physical Exercise for Breast Cancer Survivors: Face-to-face Versus Home-based
NCT05071560
Barriers to Therapeutic Exercise in Breast Cancer Patients Before, During, and After Chemotherapy
NCT06828614
Studying Tailored Exercise Prescriptions in Breast Cancer Patients
NCT02802826
Effects of a Physical Exercise Program in Quality of Life of Breast Cancer Survivors
NCT04024280
Exercise Program on Pain, Physical Function, and Quality of Life in Breast Cancer Survivors
NCT06618690
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The intervention design will consider the PA/exercise preferences, perceived barriers, and facilitators of women with BC. This information will be collected before the intervention through a mixed-methods qualitative study that will include a survey and focus groups. The intervention will be conducted online to ensure the participants' safety during the chemotherapy treatment phase, as they may have compromised immunity. Also, this option was made to attenuate participants' burden caused by commuting requirements. Participants will be enrolled in two cohorts.
Criteria for discontinuing or modifying allocated interventions Participants will be informed in the pre-study initial meeting that they may leave the study anytime. Participants will be asked to refrain from continuing the intervention if a worsening clinical condition prevents them from exercising and performing the assessments safely. The exercise program might be reviewed and tailored to the participants' condition across the intervention.
Strategies to improve adherence Before implementing this study, a survey and focus-group-based study will be performed to adjust the exercise program to the preferences, perceived barriers, and facilitators of women with a breast cancer diagnosis, considering the environmental and cultural context from where the intervention will be conducted. The supervising professional will monitor adherence to the supervised sessions through presence registration. This study will also consider the participants' adherence to the control group. To attempt dropout minimization, the investigators will have an active control group.
Concomitant care Physiotherapy treatments prescribed by the participant's primary physician and any exercises prescribed to be performed at home prescribed by the physiotherapist will be allowed during the intervention. Participants in the study will be asked not to engage in other exercise and PA programs or activities outside the program. Participants in the control group will not be prohibited from performing physical activities like brisk walking.
Sample size Considering this study design, sample size calculations were made for the primary outcome with a factorial variance analysis with repeated measures as reference statistical analysis, giving an initial estimation of 82 participants. Based on previous findings and considering a 20% dropout, the sample size was estimated at 98 participants with a moderate effect size (a=0.05; statistical power=0.80) according to Cohen's D calculations, using G\* Power 3.1.
Recruitment Recruitment will occur through medical referrals from primary physicians of several public and private hospitals in the Algarve region. Additionally, the project will be presented at breast cancer-themed congresses and events, and digital flyers with information about the study will be made to assist in disseminating the project and the recruitment process. A research team member will then contact patients referred by the doctors to receive detailed information about the study. Optionally, patients can call the research team directly or contact them through email if they prefer. After confirming eligibility criteria and interest in participating in the study, patients will be asked to attend an initial session where more information will be given, and the informed consent will be signed. During that session, participants will be told they are not obliged to participate in the study and may decide to leave the project. Consent for data collection or sharing will also be obtained.
Data collection methods Assessments will be conducted in standardized conditions, in a clinical setting, in a calm and comfortable environment, in small groups, and performed by a qualified exercise professional. The assessments will be conducted in the morning, starting with the body composition measurements, followed by a 15-minute pause so participants can eat (since they will be weighted while fasting), preceded by a 10-minute warm-up with general movements to mobilize big muscle groups and the physical tests, that will be performed in the following order: shoulder angular measurements, strength, mobility, and aerobic endurance. Participants will be divided into small groups to facilitate instruction and conduction of the tests. Participants will receive the accelerometers one week before the field tests and return them on the physical assessment day. After the field measurements, all questionnaires will be delivered and answered through email (Google Forms)
Plans to promote retention The conducting exercise professional will control participants' adherence to the exercise program through a presence registry collected by the research team member with access to the list of participants' numbers. After the session, the non-interventionist research team member will pass the presence list to the respective numbers of the participants for program adherence analysis. If a participant fails to attend a session, contact will be made to ensure the participant's welfare and motivate them to participate in the next session. The data analysis will not consider participants who fail to attend 50% or more sessions. Positive feedback will be given to the participants during the sessions, as positive feedback enhances feelings of competence, enjoyment, and interest in the activity 86. Additionally, participants will be encouraged to keep an activity diary where they may register all activities performed autonomously. Participants will be contacted one week before the assessment to confirm their availability and presence. Data from participants who fail to perform the assessments during the intervention period will be excluded from data analysis. After the intervention, participants will be contacted monthly to check their well-being and keep their interest and motivation in engaging in the follow-up assessment.
Data management All the data collected in this study will be kept confidential, computerized, and encrypted in a database without any elements that may allow identification of the participants. After the participants have expressed interest and written informed consent, a number corresponding to the participant ID during the study will be provided. When the participant receives her ID number, all data inserted in the databases will not be directly linked to the participant's personal identification. A dataset will be created for each assessment time point. All datasets will be maintained by the members responsible for the investigation on a secure server of CIDEFES-UL for ten years and will be used exclusively for research purposes. Datasets used for specific analyses or to develop sub-studies will contain only the necessary variables and the demographical indicators provided to the research team members upon request to the leading investigator.
Statistical methods All data will be analyzed using IBM SPSS (version 29.0). Factorial ANCOVAS with repeated measures will be used for the primary and secondary outcomes, adjusted for potential covariates (e.g., concomitant treatments, BC diagnosis, neo-adjuvant/ adjuvant chemotherapy). Independent sample T-tests will be used to compare results between groups at each time point, considering chemotherapy completers versus non-completers. A Fisher's exact test will compare the proportion of participants who needed chemotherapy adjustments from those who did not. The intention-to-treat analysis will be conducted to ensure that all participants are included in the overall assessment, considering their compliance with the study protocol. The Last Observation Carried Forward method will be used to input missing data values. A per-protocol analysis will also be conducted without participants who failed to complete at least 50% of the training sessions. Normality plots and Kolmogorov-Smirnov tests will be performed to test the normality of outcome variables. If normality is not satisfied, non-parametric tests will be applied (e.g., Krustal-Wallis). Mediators of change (i.e., mechanisms by which RDI) will be explored using structural equation modeling (AMOS 18.0) and multiple mediation analysis (PROCESS macro for SPSS). Putative candidates will include treatment (e.g., dose planned vs. given dose, planned cycles minimum/maximum, treatment interruption ratios, response to treatment, percentage of participants who needed dose adjustments, and the mean value of dose adjustment), and physiological (e.g., body composition, functional performance, handgrip strength, PA levels) variables. Mediation occurs when a causal effect of an independent variable occurs on a dependent variable, partly or entirely explained by a mediator. Indirect effects testing will be performed using Preacher and Hayes' procedures.
Data monitoring A data monitoring committee will not be required for this trial as the interventions pose minimal risk, and participants will be protected by personal insurance throughout the study.
Harms All participants will have their adverse events monitored throughout the study, whether directly related to the intervention or not (if applicable). This monitoring will be done through self-reporting at the start of each session, registered for analysis and report purposes, or by their primary care physicians. Participants will be advised to contact the clinical team if they have difficulties.
Auditing Two authors will supervise all trial procedures and cross-check the interventionist actions and study processes. Additionally, an independent person external to the project will review the protocol.
Research ethics approval This study has received ethical approval from the collaborating hospital (UAIF 069/2024). This trial will follow the World Medical Association's Declaration of Helsinki for Human Studies.
Consent or assent Healthcare professionals will approach potential participants to determine if they are interested in participating. If they express interest, they will be referred to a research team member who will contact them. Additionally, interested participants will be allowed to share the study information with other women who have been diagnosed with breast cancer. If any of these women express interest in participating, they will also be considered after obtaining medical clearance. Once the eligibility criteria for the study are confirmed and the women express their interest in participating, they will receive the Informed Consent through email. In the informational session, women will be asked to digitally fill out and sign the Informed Consent. It will be clear to the participants that they can withdraw their consent anytime. After the informational session, a PDF copy of the signed Informed Consent will be emailed to each participant. The research team will also take additional measures to collect and share the participants' data.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
Participants in this group will perform a home-based combined exercise program throughout their chemotherapy treatments, starting within 1-2 weeks of its start and ending within 3-4 weeks post-treatment completion.
Women randomized to the control group will receive weekly 30-minute supervised sessions with breathing, stretching, relaxation exercises, and meditation during the intervention period.
SUPPORTIVE_CARE
TRIPLE
Healthcare professionals responsible for the chemotherapy prescription and administration and registering all clinical information will be blinded to the participants' groups.
None of the research team members will know the number of participants, so data analysis will be performed in a blinded setting.
If, at any given moment, a participant reveals her number to a research team member, all posterior data from that participant will be disregarded.
If a participant decides to leave the study or must abandon it due to health complications, the team member with the number information will be informed, and data will be disregarded from the analysis.
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Home-based combined exercise
Exercise intervention will be led by qualified exercise professionals online via Zoom. It will consist of two weekly 60-minute online exercise group sessions: a 5-minute warm-up, 30-minute resistance training, and a 20-minute aerobic exercise component, finishing with a 5-minute cooldown.
The warm-up will consist of mobility and activation movements. The resistance training component will consist of 9 exercises involving large muscle groups, performed with body weight or free weights. The exercises will be completed in 2-3 sets of 10-15 repetitions. The aerobic component will consist of low-impact dance exercises that move large muscle groups to increase heart rate. The cooldown will consist of breathing exercises and light stretches.
Home-based combined exercise program with self-selected intensity
Before the beginning of the exercise program, participants will receive an education session on how to use Borg's Perceived Rate of Exertion Scale (RPE) to monitor their effort during aerobic and resistance training and tips on when they may increase the exercise intensity. During the training sessions, participants in the intervention group will be asked to choose their preferred load to execute each exercise in the resistance component, told to perform the aerobic exercises at their preferred speed, and informed that they can stop exercising whenever they need to rest. The exercise professional may suggest increasing loads in specific exercises, but these increases will not be imposed on the participants. Attendance to the sessions in the intervention and control groups will be registered. Additionally, women in this group will be encouraged to perform brisk walking at their preferred intensity and receive a pedometer to increase walking motivation.
Active control group
The control group will receive weekly 30-minute supervised sessions with breathing, stretching, relaxation exercises, and meditation.
Home-based combined exercise program with self-selected intensity
Before the beginning of the exercise program, participants will receive an education session on how to use Borg's Perceived Rate of Exertion Scale (RPE) to monitor their effort during aerobic and resistance training and tips on when they may increase the exercise intensity. During the training sessions, participants in the intervention group will be asked to choose their preferred load to execute each exercise in the resistance component, told to perform the aerobic exercises at their preferred speed, and informed that they can stop exercising whenever they need to rest. The exercise professional may suggest increasing loads in specific exercises, but these increases will not be imposed on the participants. Attendance to the sessions in the intervention and control groups will be registered. Additionally, women in this group will be encouraged to perform brisk walking at their preferred intensity and receive a pedometer to increase walking motivation.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Home-based combined exercise program with self-selected intensity
Before the beginning of the exercise program, participants will receive an education session on how to use Borg's Perceived Rate of Exertion Scale (RPE) to monitor their effort during aerobic and resistance training and tips on when they may increase the exercise intensity. During the training sessions, participants in the intervention group will be asked to choose their preferred load to execute each exercise in the resistance component, told to perform the aerobic exercises at their preferred speed, and informed that they can stop exercising whenever they need to rest. The exercise professional may suggest increasing loads in specific exercises, but these increases will not be imposed on the participants. Attendance to the sessions in the intervention and control groups will be registered. Additionally, women in this group will be encouraged to perform brisk walking at their preferred intensity and receive a pedometer to increase walking motivation.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Scheduled to receive neoadjuvant or adjuvant chemotherapy
* Have acess to a computer
Exclusion Criteria
* Non-controlled health conditions or diseases
* Psychological illness
* Currently enrolled in a structured exercise program
* Unable to complete the entire program (e.g., due to scheduled surgery or personal commitments)
* Pregnancy
* Worsening of clinical condition during intervention
18 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Universidade Lusófona de Humanidades e Tecnologias
OTHER
Grupo HPA
UNKNOWN
Associação Oncológica do Algarve
UNKNOWN
Liga Portuguesa Contra o Cancro
UNKNOWN
Centro Hospitalar Universitario do Algarve
OTHER
Grupo Lusófona
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Pedro B. Júdice, PhD
Role: STUDY_DIRECTOR
CIDEFES
Eliana V. Carraça, PhD
Role: STUDY_DIRECTOR
CIDEFES
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Universidade Lusófona, Centro de Lisboa
Lisbon, , Portugal
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S, Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022 Dec;66:15-23. doi: 10.1016/j.breast.2022.08.010. Epub 2022 Sep 2.
Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A, Siegel RL. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022 Nov;72(6):524-541. doi: 10.3322/caac.21754. Epub 2022 Oct 3.
Leidy NK. Functional status and the forward progress of merry-go-rounds: toward a coherent analytical framework. Nurs Res. 1994 Jul-Aug;43(4):196-202.
Tong CKW, Lau B, Davis MK. Exercise Training for Cancer Survivors. Curr Treat Options Oncol. 2020 May 27;21(7):53. doi: 10.1007/s11864-020-00752-w.
Nygren P; SBU-group. Swedish Council on Technology Assessment in Health Care. What is cancer chemotherapy? Acta Oncol. 2001;40(2-3):166-74. doi: 10.1080/02841860151116204.
Kerr AJ, Dodwell D, McGale P, Holt F, Duane F, Mannu G, Darby SC, Taylor CW. Adjuvant and neoadjuvant breast cancer treatments: A systematic review of their effects on mortality. Cancer Treat Rev. 2022 Apr;105:102375. doi: 10.1016/j.ctrv.2022.102375. Epub 2022 Mar 4.
Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO, Harguindey S, Reshkin SJ, Ibrahim ME, Rauch C. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015 Jul 15;15:71. doi: 10.1186/s12935-015-0221-1. eCollection 2015.
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem. 2022 Sep 5;239:114542. doi: 10.1016/j.ejmech.2022.114542. Epub 2022 Jun 17.
Longo DL, Duffey PL, DeVita VT Jr, Wesley MN, Hubbard SM, Young RC. The calculation of actual or received dose intensity: a comparison of published methods. J Clin Oncol. 1991 Nov;9(11):2042-51. doi: 10.1200/JCO.1991.9.11.2042.
Lyman GH, Dale DC, Crawford J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: a nationwide study of community practices. J Clin Oncol. 2003 Dec 15;21(24):4524-31. doi: 10.1200/JCO.2003.05.002.
Wildiers H, Reiser M. Relative dose intensity of chemotherapy and its impact on outcomes in patients with early breast cancer or aggressive lymphoma. Crit Rev Oncol Hematol. 2011 Mar;77(3):221-40. doi: 10.1016/j.critrevonc.2010.02.002. Epub 2010 Mar 15.
Bland KA, Zadravec K, Landry T, Weller S, Meyers L, Campbell KL. Impact of exercise on chemotherapy completion rate: A systematic review of the evidence and recommendations for future exercise oncology research. Crit Rev Oncol Hematol. 2019 Apr;136:79-85. doi: 10.1016/j.critrevonc.2019.02.005. Epub 2019 Feb 16.
Ashcraft KA, Warner AB, Jones LW, Dewhirst MW. Exercise as Adjunct Therapy in Cancer. Semin Radiat Oncol. 2019 Jan;29(1):16-24. doi: 10.1016/j.semradonc.2018.10.001.
Wang Q, Zhou W. Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. J Sport Health Sci. 2021 Mar;10(2):201-210. doi: 10.1016/j.jshs.2020.07.008. Epub 2020 Jul 30.
Zhu C, Ma H, He A, Li Y, He C, Xia Y. Exercise in cancer prevention and anticancer therapy: Efficacy, molecular mechanisms and clinical information. Cancer Lett. 2022 Sep 28;544:215814. doi: 10.1016/j.canlet.2022.215814. Epub 2022 Jul 5.
Kampshoff CS, Jansen F, van Mechelen W, May AM, Brug J, Chinapaw MJ, Buffart LM. Determinants of exercise adherence and maintenance among cancer survivors: a systematic review. Int J Behav Nutr Phys Act. 2014 Jul 2;11:80. doi: 10.1186/1479-5868-11-80.
Sheill G, Guinan E, Brady L, Hevey D, Hussey J. Exercise interventions for patients with advanced cancer: A systematic review of recruitment, attrition, and exercise adherence rates. Palliat Support Care. 2019 Dec;17(6):686-696. doi: 10.1017/S1478951519000312.
Ng AH, Ngo-Huang A, Vidal M, Reyes-Garcia A, Liu DD, Williams JL, Fu JB, Yadav R, Bruera E. Exercise Barriers and Adherence to Recommendations in Patients With Cancer. JCO Oncol Pract. 2021 Jul;17(7):e972-e981. doi: 10.1200/OP.20.00625. Epub 2021 Mar 19.
Mijwel S, Bolam KA, Gerrevall J, Foukakis T, Wengstrom Y, Rundqvist H. Effects of Exercise on Chemotherapy Completion and Hospitalization Rates: The OptiTrain Breast Cancer Trial. Oncologist. 2020 Jan;25(1):23-32. doi: 10.1634/theoncologist.2019-0262. Epub 2019 Aug 7.
Sanft T, Harrigan M, McGowan C, Cartmel B, Zupa M, Li FY, Ferrucci LM, Puklin L, Cao A, Nguyen TH, Neuhouser ML, Hershman DL, Basen-Engquist K, Jones BA, Knobf T, Chagpar AB, Silber A, Tanasijevic A, Ligibel JA, Irwin ML. Randomized Trial of Exercise and Nutrition on Chemotherapy Completion and Pathologic Complete Response in Women With Breast Cancer: The Lifestyle, Exercise, and Nutrition Early After Diagnosis Study. J Clin Oncol. 2023 Dec 1;41(34):5285-5295. doi: 10.1200/JCO.23.00871. Epub 2023 Sep 1.
Denton F, Power S, Waddell A, Birkett S, Duncan M, Harwood A, McGregor G, Rowley N, Broom D. Is It Really Home-Based? A Commentary on the Necessity for Accurate Definitions across Exercise and Physical Activity Programmes. Int J Environ Res Public Health. 2021 Sep 1;18(17):9244. doi: 10.3390/ijerph18179244.
Coughlin SS, Caplan LS, Williams V. Home-based physical activity interventions for breast cancer patients receiving primary therapy: a systematic review. Breast Cancer Res Treat. 2019 Dec;178(3):513-522. doi: 10.1007/s10549-019-05424-4. Epub 2019 Sep 6.
Bates-Fraser LC, Riley S, Stopforth C, Moertl K, Edgar K, Stoner L, Hanson ED. Home-based exercise improves quality of life in breast and prostate cancer survivors: A meta-analysis. PLoS One. 2023 Apr 20;18(4):e0284427. doi: 10.1371/journal.pone.0284427. eCollection 2023.
Ramos PGF, Judice PB, Nobre I, Carraca EV. Home-based exercise interventions' impact on breast cancer survivors' functional performance: a systematic review. J Cancer Surviv. 2025 Aug;19(4):1222-1235. doi: 10.1007/s11764-024-01545-y. Epub 2024 Feb 15.
Dinapoli L, Colloca G, Di Capua B, Valentini V. Psychological Aspects to Consider in Breast Cancer Diagnosis and Treatment. Curr Oncol Rep. 2021 Mar 11;23(3):38. doi: 10.1007/s11912-021-01049-3.
El Kheir DYM, Ibrahim AHM. Epidemiological assessment of distress during chemotherapy: who is affected? J Taibah Univ Med Sci. 2019 Oct 8;14(5):448-453. doi: 10.1016/j.jtumed.2019.08.004. eCollection 2019 Oct.
Ekkekakis P. Let them roam free? Physiological and psychological evidence for the potential of self-selected exercise intensity in public health. Sports Med. 2009;39(10):857-88. doi: 10.2165/11315210-000000000-00000.
Schleicher E, McAuley E, Courneya KS, Anton P, Ehlers DK, Phillips SM, Brown NI, Oster RA, Pekmezi D, Rogers LQ. Breast cancer survivors' exercise preferences change during an exercise intervention are associated with post-intervention physical activity. J Cancer Surviv. 2024 Oct;18(5):1453-1463. doi: 10.1007/s11764-023-01389-y. Epub 2023 Apr 29.
Chen X, Shi X, Yu Z, Ma X. High-intensity interval training in breast cancer patients: A systematic review and meta-analysis. Cancer Med. 2023 Sep;12(17):17692-17705. doi: 10.1002/cam4.6387. Epub 2023 Aug 17.
Ekkekakis P, Biddle SJH. Extraordinary claims in the literature on high-intensity interval training (HIIT): IV. Is HIIT associated with higher long-term exercise adherence? Psychol Sport Exerc. 2023 Jan;64:102295. doi: 10.1016/j.psychsport.2022.102295. Epub 2022 Sep 17.
Ramirez-Parada K, Courneya KS, Muniz S, Sanchez C, Fernandez-Verdejo R. Physical activity levels and preferences of patients with breast cancer receiving chemotherapy in Chile. Support Care Cancer. 2019 Aug;27(8):2941-2947. doi: 10.1007/s00520-018-4595-1. Epub 2018 Dec 18.
Alves RC, Enes A, Follador L, Prestes J, DA Silva SG. Effect of Different Training Programs at Self-Selected Intensity on Body Composition, Perceptual Responses and Fitness Outcomes in Obese Women. Int J Exerc Sci. 2022 Feb 1;15(4):373-385. doi: 10.70252/HJJD8645. eCollection 2022.
Glass SC, Ahmad S, Gabler T. Effectiveness of a 2-Week Strength Training Learning Intervention on Self-selected Weight-Training Intensity. J Strength Cond Res. 2020 Sep;34(9):2443-2448. doi: 10.1519/JSC.0000000000003729.
Ratamess NA, Faigenbaum AD, Hoffman JR, Kang J. Self-selected resistance training intensity in healthy women: the influence of a personal trainer. J Strength Cond Res. 2008 Jan;22(1):103-11. doi: 10.1519/JSC.0b013e31815f29cc.
Power, S., Rowley, N., Duncan, M. & Broom, D. Co-Designing and Refining a Home-Based Exercise Programme for Adults Living with Overweight and Obesity: Insight from People with Lived Experience. Obesities 3, 132-145 (2023).
Gildea GC, Spence RR, Jones TL, Turner JC, Macdonald ER, Hayes SC, Sandler CX. Barriers, facilitators, perceptions and preferences influencing physical activity participation, and the similarities and differences between cancer types and treatment stages - A systematic rapid review. Prev Med Rep. 2023 May 24;34:102255. doi: 10.1016/j.pmedr.2023.102255. eCollection 2023 Aug.
Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hrobjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013 Jan 8;346:e7586. doi: 10.1136/bmj.e7586.
Kraemer MB, Priolli DG, Reis IGM, Pelosi AC, Garbuio ALP, Messias LHD. Home-based, supervised, and mixed exercise intervention on functional capacity and quality of life of colorectal cancer patients: a meta-analysis. Sci Rep. 2022 Feb 15;12(1):2471. doi: 10.1038/s41598-022-06165-z.
Sharma A, Jasrotia S, Kumar A. Effects of Chemotherapy on the Immune System: Implications for Cancer Treatment and Patient Outcomes. Naunyn Schmiedebergs Arch Pharmacol. 2024 May;397(5):2551-2566. doi: 10.1007/s00210-023-02781-2. Epub 2023 Oct 31.
Courneya KS, Segal RJ, Vallerand JR, Forbes CC, Crawford JJ, Dolan LB, Friedenreich CM, Reid RD, Gelmon K, Mackey JR, McKenzie DC. Motivation for Different Types and Doses of Exercise During Breast Cancer Chemotherapy: a Randomized Controlled Trial. Ann Behav Med. 2016 Aug;50(4):554-63. doi: 10.1007/s12160-016-9782-z.
Winters-Stone KM, Boisvert C, Li F, Lyons KS, Beer TM, Mitri Z, Meyers G, Eckstrom E, Campbell KL. Delivering exercise medicine to cancer survivors: has COVID-19 shifted the landscape for how and who can be reached with supervised group exercise? Support Care Cancer. 2022 Mar;30(3):1903-1906. doi: 10.1007/s00520-021-06669-w. Epub 2021 Nov 6.
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.
Borg, G. Borg's Perceived Exertion and Pain Scales. (Human Kinetics, Champaign, IL, 1998).
Thorup CB, Gronkjaer M, Spindler H, Andreasen JJ, Hansen J, Dinesen BI, Nielsen G, Sorensen EE. Pedometer use and self-determined motivation for walking in a cardiac telerehabilitation program: a qualitative study. BMC Sports Sci Med Rehabil. 2016 Aug 18;8:24. doi: 10.1186/s13102-016-0048-7. eCollection 2016.
Pudkasam S, Polman R, Pitcher M, Fisher M, Chinlumprasert N, Stojanovska L, Apostolopoulos V. Physical activity and breast cancer survivors: Importance of adherence, motivational interviewing and psychological health. Maturitas. 2018 Oct;116:66-72. doi: 10.1016/j.maturitas.2018.07.010. Epub 2018 Jul 23.
Pudkasam S, Feehan J, Talevski J, Vingrys K, Polman R, Chinlumprasert N, Stojanovska L, Apostolopoulos V. Motivational strategies to improve adherence to physical activity in breast cancer survivors: A systematic review and meta-analysis. Maturitas. 2021 Oct;152:32-47. doi: 10.1016/j.maturitas.2021.06.008. Epub 2021 Jun 24.
Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, Chastin SFM, Altenburg TM, Chinapaw MJM; SBRN Terminology Consensus Project Participants. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017 Jun 10;14(1):75. doi: 10.1186/s12966-017-0525-8.
Cohen, J. Statistical Power Analysis for the Behavioral Sciences. (L. Erlbaum Associates, Hillsdale, N.J, 1988).
Kang H. Sample size determination and power analysis using the G*Power software. J Educ Eval Health Prof. 2021;18:17. doi: 10.3352/jeehp.2021.18.17. Epub 2021 Jul 30.
Carraca EV, Rodrigues B, Franco S, Nobre I, Jeronimo F, Ilharco V, Gabriel F, Ribeiro L, Palmeira AL, Silva MN. Promoting physical activity through supervised vs motivational behavior change interventions in breast cancer survivors on aromatase inhibitors (PAC-WOMAN): protocol for a 3-arm pragmatic randomized controlled trial. BMC Cancer. 2023 Jul 5;23(1):632. doi: 10.1186/s12885-023-11137-1.
Hryniuk W, Bush H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol. 1984 Nov;2(11):1281-8. doi: 10.1200/JCO.1984.2.11.1281. No abstract available.
Van Vulpen JK, Velthuis MJ, Steins Bisschop CN, Travier N, Van Den Buijs BJ, Backx FJ, Los M, Erdkamp FL, Bloemendal HJ, Koopman M, De Roos MA, Verhaar MJ, Ten Bokkel-Huinink D, Van Der Wall E, Peeters PH, May AM. Effects of an Exercise Program in Colon Cancer Patients undergoing Chemotherapy. Med Sci Sports Exerc. 2016 May;48(5):767-75. doi: 10.1249/MSS.0000000000000855.
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002 Jul 1;166(1):111-7. doi: 10.1164/ajrccm.166.1.at1102. No abstract available.
Schmidt K, Vogt L, Thiel C, Jager E, Banzer W. Validity of the six-minute walk test in cancer patients. Int J Sports Med. 2013 Jul;34(7):631-6. doi: 10.1055/s-0032-1323746. Epub 2013 Feb 26.
But-Hadzic J, Dervisevic M, Karpljuk D, Videmsek M, Dervisevic E, Paravlic A, Hadzic V, Tomazin K. Six-Minute Walk Distance in Breast Cancer Survivors-A Systematic Review with Meta-Analysis. Int J Environ Res Public Health. 2021 Mar 5;18(5):2591. doi: 10.3390/ijerph18052591.
Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013 Apr;53(2):255-67. doi: 10.1093/geront/gns071. Epub 2012 May 20.
Hoenemeyer TW, Cole WW, Oster RA, Pekmezi DW, Pye A, Demark-Wahnefried W. Test/Retest Reliability and Validity of Remote vs. In-Person Anthropometric and Physical Performance Assessments in Cancer Survivors and Supportive Partners. Cancers (Basel). 2022 Feb 21;14(4):1075. doi: 10.3390/cancers14041075.
BECHTOL CO. Grip test; the use of a dynamometer with adjustable handle spacings. J Bone Joint Surg Am. 1954 Jul;36-A(4):820-4; passim. No abstract available.
Huang L, Liu Y, Lin T, Hou L, Song Q, Ge N, Yue J. Reliability and validity of two hand dynamometers when used by community-dwelling adults aged over 50 years. BMC Geriatr. 2022 Jul 15;22(1):580. doi: 10.1186/s12877-022-03270-6.
Polat K, Karadibak D, Guc ZGS, Yavuzsen T, Oztop I. The Relationship between Exercise Capacity and Muscle Strength, Physical Activity, Fatigue and Quality of Life in Patients with Cancer Cachexia. Nutr Cancer. 2024;76(1):55-62. doi: 10.1080/01635581.2023.2276486. Epub 2023 Dec 27.
Rosen B. Recovery of sensory and motor function after nerve repair. A rationale for evaluation. J Hand Ther. 1996 Oct-Dec;9(4):315-27. doi: 10.1016/s0894-1130(96)80037-8.
Paek J, Choi YJ. Association between hand grip strength and impaired health-related quality of life in Korean cancer survivors: a cross-sectional study. BMJ Open. 2019 Sep 8;9(9):e030938. doi: 10.1136/bmjopen-2019-030938.
Esteban-Simon A, Diez-Fernandez DM, Artes-Rodriguez E, Casimiro-Artes MA, Rodriguez-Perez MA, Moreno-Martos H, Casimiro-Andujar AJ, Soriano-Maldonado A. Absolute and Relative Handgrip Strength as Indicators of Self-Reported Physical Function and Quality of Life in Breast Cancer Survivors: The EFICAN Study. Cancers (Basel). 2021 Oct 21;13(21):5292. doi: 10.3390/cancers13215292.
Rikli, R. E. & Jones, C. J. Senior Fitness Test Manual. (Human Kinetics, United Kingdom, 2001).
Kolber MJ, Hanney WJ. The reliability and concurrent validity of shoulder mobility measurements using a digital inclinometer and goniometer: a technical report. Int J Sports Phys Ther. 2012 Jun;7(3):306-13.
Yamada Y, Yoshida T, Murakami H, Kawakami R, Gando Y, Ohno H, Tanisawa K, Konishi K, Julien T, Kondo E, Nakagata T, Nanri H, Miyachi M. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Sci Rep. 2022 Oct 14;12(1):17274. doi: 10.1038/s41598-022-21095-6.
Gil-Herrero L, Pollan M, Martin M, Lopez-Tarruella S, Castellanos M, Casla-Barrio S. The importance of physical exercise in cardiovascular fitness in breast cancer survivors. A cross-sectional study: women in Motion 2.0. Support Care Cancer. 2022 Aug;30(8):6745-6754. doi: 10.1007/s00520-022-06993-9. Epub 2022 May 6.
Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel). 2014 Jun 19;14(6):10895-928. doi: 10.3390/s140610895.
Cotogni P, Monge T, Fadda M, De Francesco A. Bioelectrical impedance analysis for monitoring cancer patients receiving chemotherapy and home parenteral nutrition. BMC Cancer. 2018 Oct 17;18(1):990. doi: 10.1186/s12885-018-4904-6.
Baharudin, A. et al. Reliability, Technical Error of Measurement and Validity of Height Measurement Using Portable Stadiometer. (2017).
Tudor-Locke C, Johnson WD, Katzmarzyk PT. Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc. 2009 Jul;41(7):1384-91. doi: 10.1249/MSS.0b013e318199885c.
Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011 Oct 21;8:115. doi: 10.1186/1479-5868-8-115.
Suau Q, Bianchini E, Bellier A, Chardon M, Milane T, Hansen C, Vuillerme N. Current Knowledge about ActiGraph GT9X Link Activity Monitor Accuracy and Validity in Measuring Steps and Energy Expenditure: A Systematic Review. Sensors (Basel). 2024 Jan 26;24(3):825. doi: 10.3390/s24030825.
Bassett DR Jr. Validity and Reliability issues in Objective Monitoring of Physical Activity. Res Q Exerc Sport. 2000 Jun;71 Suppl 2:30-6. doi: 10.1080/02701367.2000.11082783. No abstract available.
Bassett, D. R. & John, D. Use of pedometers and accelerometers in clinical populations: validity and reliability issues. Physical Therapy Reviews 15, 135-142 (2010).
Trinh L, Motl RW, Roberts SA, Gibbons T, McAuley E. Estimation of physical activity intensity cut-points using accelerometry in breast cancer survivors and age-matched controls. Eur J Cancer Care (Engl). 2019 Sep;28(5):e13090. doi: 10.1111/ecc.13090. Epub 2019 May 20.
Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008 Jan;40(1):181-8. doi: 10.1249/mss.0b013e31815a51b3.
Watson KB, Carlson SA, Carroll DD, Fulton JE. Comparison of accelerometer cut points to estimate physical activity in US adults. J Sports Sci. 2014;32(7):660-9. doi: 10.1080/02640414.2013.847278. Epub 2013 Nov 5.
Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, Filiberti A, Flechtner H, Fleishman SB, de Haes JC, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993 Mar 3;85(5):365-76. doi: 10.1093/jnci/85.5.365.
Bjelic-Radisic V, Cardoso F, Cameron D, Brain E, Kuljanic K, da Costa RA, Conroy T, Inwald EC, Serpentini S, Pinto M, Weis J, Morag O, Lindviksmoen Astrup G, Tomaszweksi KA, Pogoda K, Sinai P, Sprangers M, Aaronson N, Velikova G, Greimel E, Arraras J, Bottomley A; EORTC Quality of Life Group and Breast Cancer Group. An international update of the EORTC questionnaire for assessing quality of life in breast cancer patients: EORTC QLQ-BR45. Ann Oncol. 2020 Feb;31(2):283-288. doi: 10.1016/j.annonc.2019.10.027. Epub 2019 Dec 18.
Sprangers MA, Groenvold M, Arraras JI, Franklin J, te Velde A, Muller M, Franzini L, Williams A, de Haes HC, Hopwood P, Cull A, Aaronson NK. The European Organization for Research and Treatment of Cancer breast cancer-specific quality-of-life questionnaire module: first results from a three-country field study. J Clin Oncol. 1996 Oct;14(10):2756-68. doi: 10.1200/JCO.1996.14.10.2756.
Tsui TCO, Trudeau M, Mitsakakis N, Torres S, Bremner KE, Kim D, Davis AM, Krahn MD. Developing the Breast Utility Instrument, a preference-based instrument to measure health-related quality of life in women with breast cancer: Confirmatory factor analysis of the EORTC QLQ-C30 and BR45 to establish dimensions. PLoS One. 2022 Feb 4;17(2):e0262635. doi: 10.1371/journal.pone.0262635. eCollection 2022.
Imran M, Al-Wassia R, Alkhayyat SS, Baig M, Al-Saati BA. Assessment of quality of life (QoL) in breast cancer patients by using EORTC QLQ-C30 and BR-23 questionnaires: A tertiary care center survey in the western region of Saudi Arabia. PLoS One. 2019 Jul 10;14(7):e0219093. doi: 10.1371/journal.pone.0219093. eCollection 2019.
Curigliano G, Dunton K, Rosenlund M, Janek M, Cathcart J, Liu Y, Fasching PA, Iwata H. Patient-reported outcomes and hospitalization data in patients with HER2-positive metastatic breast cancer receiving trastuzumab deruxtecan or trastuzumab emtansine in the phase III DESTINY-Breast03 study. Ann Oncol. 2023 Jul;34(7):569-577. doi: 10.1016/j.annonc.2023.04.516. Epub 2023 May 12.
Trewick N, Neumann DL, Hamilton K. Effect of affective feedback and competitiveness on performance and the psychological experience of exercise within a virtual reality environment. PLoS One. 2022 Jun 8;17(6):e0268460. doi: 10.1371/journal.pone.0268460. eCollection 2022.
Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986 Dec;51(6):1173-82. doi: 10.1037//0022-3514.51.6.1173.
Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods. 2008 Aug;40(3):879-91. doi: 10.3758/brm.40.3.879.
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013 Nov 27;310(20):2191-4. doi: 10.1001/jama.2013.281053. No abstract available.
Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA. 2003 Sep 24;290(12):1624-32. doi: 10.1001/jama.290.12.1624.
Lopez P, Galvao DA, Taaffe DR, Newton RU, Souza G, Trajano GS, Pinto RS. Resistance training in breast cancer patients undergoing primary treatment: a systematic review and meta-regression of exercise dosage. Breast Cancer. 2021 Jan;28(1):16-24. doi: 10.1007/s12282-020-01147-3. Epub 2020 Aug 19.
Kjeldsted E, Gehl J, Sorensen DM, Lodin A, Ceballos SG, Dalton SO. Patient-Related Characteristics Associated with Treatment Modifications and Suboptimal Relative Dose Intensity of Neoadjuvant Chemotherapy in Patients with Breast Cancer-A Retrospective Study. Cancers (Basel). 2023 Apr 26;15(9):2483. doi: 10.3390/cancers15092483.
Kanzawa-Lee GA, Larson JL, Resnicow K, Smith EML. Exercise Effects on Chemotherapy-Induced Peripheral Neuropathy: A Comprehensive Integrative Review. Cancer Nurs. 2020 May/Jun;43(3):E172-E185. doi: 10.1097/NCC.0000000000000801.
Schauer T, Hojman P, Gehl J, Christensen JF. Exercise training as prophylactic strategy in the management of neutropenia during chemotherapy. Br J Pharmacol. 2022 Jun;179(12):2925-2937. doi: 10.1111/bph.15141. Epub 2020 Jun 20.
Streckmann F, Balke M, Cavaletti G, Toscanelli A, Bloch W, Decard BF, Lehmann HC, Faude O. Exercise and Neuropathy: Systematic Review with Meta-Analysis. Sports Med. 2022 May;52(5):1043-1065. doi: 10.1007/s40279-021-01596-6. Epub 2021 Dec 29.
Li X, Wang J, Zhang J, Zhang N, Wu C, Geng Z, Zhou J, Dong L. The Effect of Exercise on Weight and Body Composition of Breast Cancer Patients Undergoing Chemotherapy: A Systematic Review. Cancer Nurs. 2023 Jan 16. doi: 10.1097/NCC.0000000000001196. Online ahead of print.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Home-Combo
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.