The Effect of Postbiotics Supplementation on Exercise-induced Oxidative Stress.
NCT ID: NCT06417671
Last Updated: 2024-12-04
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
16 participants
INTERVENTIONAL
2024-05-15
2024-08-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The human gastrointestinal tract is inhabited by various microorganisms, called the gut microbiome (GM). GM, among other things, contributes to the normal functioning of the immune system, contributes to the production of short-chain fatty acids (SCFAs) and vitamin synthesis as well as the digestion and absorption of food, protects against enteropathogens and regulates inflammatory and redox responses. Recent evidence also suggests that GM may be involved in athletic performance. In contrast, disruption of GM composition (dysbiosis) is characterized by reduced diversity, reduced abundance of health-promoting bacteria, and increased abundance of gram-negative and other pathogenic bacteria and is associated with various metabolic diseases such as obesity, diabetes, and various forms of cancer, systemic inflammation, oxidative stress and reduced performance. Thus, the supplementation of several "biotics" has been emerged as a means to regulate the GM in favor of health-promoting bacteria.
Postbiotics is defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Evidence suggests that supplementation with postbiotics may regulate the GM, and consequently, strengthen the immune system, reduce intestinal permeability, improve antioxidant mechanisms, as well as accelerate recovery after exercise-induced inflammation, enhance adaptations to exercise, and improve performance. However, the scientific data regarding the possible beneficial effect of supplemental administration of postbiotics is limited. More research is needed, in order to determine the role of postbiotics supplementation on exercise-induced inflammation and redox status, but also on performance after intense exercise.
This study will investigate the potential of postbiotics supplementation to affect the recovery of exercise-induced oxidative stress and performance following intense, eccentrically biased acute exercise.
The study will be cross-over, randomized, double-blind, controlled, and will be conducted in two cycles. The participants, will be primarily informed of the study procedures, as well as the benefits and possible risks, they will also sign an informed consent form for participation in the study. Before the experimental procedure, they will be involved in a week of familiarization to the evaluation tests and the exercise protocol, at a low intensity. In addition, the participants will record their diet via a 7-days recall before their participation in the first experimental condition, and dietary data will be analyzed with ScienceFit Diet 200A diet analysis program (Science Technologies, Athens, Greece), in order to estimate that they do not consume nutrients that may affect muscle injury, inflammation and oxidative stress (e.g. antioxidants, etc.). Baseline measurements will take place at the Laboratory of Biochemistry, Physiology and Nutrition of Exercise (SmArT Lab), Department of Physical Education and Sports, University of Thessaly: anthropometric characteristics (body height, body mass, body mass index) via a stadiometer-scale (Stadiometer 208; Seca, Birmingham, UK), body composition (amount of body fat, lean body mass, fat mass, bone density) via by dual emission X-ray absorptiometry (DXA, GE-Healthcare, Lunar DPX NT, Belgium), aerobic capacity (VO2max) via an automated online pulmonary gas analyzer (Vmax Encore 29, BEBJO296, Yorba Linda, CA, USA) during a graded exercise protocol on a treadmill (Stex 8025T, Korea), isokinetic strength (isometric, concentric and eccentric torque of the knee extensors and knee flexors) on an isokinetic dynamometer (Cybex, HUMAC NORM 360, Ronkonkoma, NY), and muscle power via the assessment of countermovement jump (CMJ) via an optical measurement system (Optojump next, Microgate, USA). Participants will then be randomized in one of the two conditions: i) Postbiotics supplementation (50mg/day of Heat-killed Lactobacillus plantarum L-137, Immuno-LP20TM) for 4 weeks, or ii) placebo supplementation for 4 weeks. Randomization of the conditions will be done by a software generating random integers available on the internet (Random.org). Seven days later, participants will perform an exercise protocol comprised of 45 min downhill running (-15% slope, \~70-75% VO2max) on a treadmill followed by a time-trial (0% slope, \~95% VO2max) until exhaustion. Before the exercise protocol, as well as 24 h, 48 h and 72 h after exercise, delayed onset of muscle soreness (DOMS) via palpation of the knee extensors and knee flexors on a scale of 1 to 10 (1 = no pain at all; 10 = extreme pain), and muscle performance (CMJ, isometric, concentric and eccentric torque of the knee extensors and knee flexors) will be assessed. Additionally, blood samples will be collected at the same time-points for the assessment of creatine kinase (CK), and blood redox status \[reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, total antioxidant capacity (TAC), catalase (CAT), protein carbonyls (PC), uric acid, bilirubin)\]. Furthermore, metabolism (lactic acid) will be assessed before and 4 min after exercise by analyzing capillary blood with a portable lactate analyzer (Lactate Plus, Nova Biomedical, USA). After a 14-days washout period, participants will repeat the exact same procedures for the remaining condition in the second cycle. Additionally, the 7-day diet recall will be given to the participants to follow the same diet before the experimental exercise protocol at the second cycle.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
SCREENING
TRIPLE
Neither the participants, nor the supplement provider will be aware of whether participants receive the postbiotic supplement or the placebo. Additionally, blood samples will be masked during the biochemical analysis, and during the statistical analysis.
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Postbiotics supplementation
Supplementation of postbiotics for 4 weeks
Postbiotics supplementation
The participants will consume one capsule per day.
Placebo supplementation
Supplementation of placebo for 4 weeks
Placebo supplementation
The participants will consume one capsule per day.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Postbiotics supplementation
The participants will consume one capsule per day.
Placebo supplementation
The participants will consume one capsule per day.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Absence of musculoskeletal injury (≥6 months)
* Abstinence from the use of ergogenic supplements (≥1 month)
* Abstinence from anti-inflammatory drugs (≥1 month)
* Abstinence from pre-pro-postbiotic supplements (≥6 months)
* Abstinence from participating in exercise with eccentric content for at least 7 days before exercise
* Abstinence from alcohol and energy drinks before exercise
Exclusion Criteria
* Use of ergogenic performance supplements (\<1 month)
* Taking anti-inflammatory drugs (\<1 month)
* Taking pre-pro-postbiotic supplements (\<6 months)
* Participation in exercise with eccentric content in the previous 7 days before exercise
* Consumption of alcohol and energy drinks before exercise
18 Years
45 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Thessaly
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Chariklia K. Deli
Associate Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Chariklia K Deli, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Thessaly, DPESS
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Department of Physical Education and Sport Science, Uninersity of Thessaly
Trikala, Thessaly, Greece
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Jamurtas AZ, Garyfallopoulou A, Theodorou AA, Zalavras A, Paschalis V, Deli CK, Nikolaidis MG, Fatouros IG, Koutedakis Y. A single bout of downhill running transiently increases HOMA-IR without altering adipokine response in healthy adult women. Eur J Appl Physiol. 2013 Dec;113(12):2925-32. doi: 10.1007/s00421-013-2717-5. Epub 2013 Sep 26.
Deli CK, Fatouros IG, Paschalis V, Tsiokanos A, Georgakouli K, Zalavras A, Avloniti A, Koutedakis Y, Jamurtas AZ. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children. Oxid Med Cell Longev. 2017;2017:4120421. doi: 10.1155/2017/4120421. Epub 2017 Jan 22.
Deli CK, Poulios A, Georgakouli K, Papanikolaou K, Papoutsis A, Selemekou M, Karathanos VT, Draganidis D, Tsiokanos A, Koutedakis Y, Fatouros IG, Jamurtas AZ. The effect of pre-exercise ingestion of corinthian currant on endurance performance and blood redox status. J Sports Sci. 2018 Oct;36(19):2172-2180. doi: 10.1080/02640414.2018.1442781. Epub 2018 Feb 22.
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13;486(7402):207-14. doi: 10.1038/nature11234.
Sales KM, Reimer RA. Unlocking a novel determinant of athletic performance: The role of the gut microbiota, short-chain fatty acids, and "biotics" in exercise. J Sport Health Sci. 2023 Jan;12(1):36-44. doi: 10.1016/j.jshs.2022.09.002. Epub 2022 Sep 9.
Jager R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr. 2019 Dec 21;16(1):62. doi: 10.1186/s12970-019-0329-0.
Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, Sanders ME, Shamir R, Swann JR, Szajewska H, Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021 Sep;18(9):649-667. doi: 10.1038/s41575-021-00440-6. Epub 2021 May 4.
Lee CC, Liao YC, Lee MC, Cheng YC, Chiou SY, Lin JS, Huang CC, Watanabe K. Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms. 2022 Nov 3;10(11):2181. doi: 10.3390/microorganisms10112181.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PostBiotics-Exercise
Identifier Type: -
Identifier Source: org_study_id