The Efficacy of Pedometer-motivated Physical Activity for the Management of Patients With MASLD.

NCT ID: NCT06334666

Last Updated: 2025-05-15

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

ENROLLING_BY_INVITATION

Clinical Phase

NA

Total Enrollment

86 participants

Study Classification

INTERVENTIONAL

Study Start Date

2024-08-01

Study Completion Date

2026-06-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The study conducted a health survey among Thai adults in 2022 and found a significant increase in obesity and nonalcoholic fatty liver disease (NAFLD), leading to metabolic-associated steatotic liver disease (MASLD). The prevalence of NAFLD was 19.7%, with higher rates in individuals with metabolic syndrome and diabetes. MASLD is associated with insulin resistance and genetic polymorphisms, particularly the patatin like phospholipase domain containing 3-rs738409 variant. Additionally, physical activity was inversely related to liver disease risk, with higher step counts associated with reduced incidence of NAFLD and liver-related mortality. The study aims to investigate the impact of dietary advice and pedometer use on physical activity levels and health outcomes in MASLD patients over 24 weeks.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The results of the health survey of the Thai population through physical examinations in the year 2022 found that among Thai people aged 18 and older, the prevalence of obesity (BMI ≥25 kg/m2) was 44.9% (40.3% in males and 49.2% in females), which has increased significantly over the past decades. This condition is a significant factor contributing to the rising incidence of nonalcoholic fatty liver disease (NAFLD) among the Thai population. NAFLD refers to fatty liver disease in individuals who consume alcohol in amounts less than 140 grams per week for females or less than 210 grams per week for males. Those with clinical features of metabolic dysfunction have been newly defined as having metabolic-associated steatotic liver disease (MASLD).

In this survey of 18,588 individuals, the prevalence of NAFLD was 19.7%, with rates of 20.9% in males and 18.6% in females. It was notably higher at 43.5% in individuals with abdominal obesity (metabolic syndrome) and 35.6% in individuals with diabetes. Factors such as age, sex, physical activity, smoking, and metabolic characteristics such as overweight or obesity, abdominal obesity, high triglyceride levels, diabetes, hypertension, and low HDL cholesterol levels are significantly associated with NAFLD.

MASLD, a type of fatty liver disease, is directly associated with insulin resistance, a key risk factor for cardiovascular diseases. Current treatment guidelines for MASLD have clear evidence that weight loss through dietary control and appropriate physical activity or exercise can reduce fat accumulation in the liver, inflammation, and fibrosis. Importantly, it also improves various metabolic parameters such as blood sugar and lipid levels, as well as the effectiveness of insulin.

The etiology of MASLD is related to behavioral and environmental factors, such as high-calorie diets combined with low physical activity and sedentary lifestyles. These factors promote insulin resistance, stimulating lipolysis and the movement of free fatty acids to various organs, including the liver. This leads to fat accumulation in the liver, insulin-resistant hepatic tissue, abnormal β-oxidation processes, oxidative stress, hepatic inflammation, increased stellate cell activation, and subsequent fibrosis, eventually increasing the risk of liver cirrhosis and hepatocellular carcinoma.

Genetic polymorphisms play a significant role in MASLD pathogenesis, with single nucleotide polymorphisms (SNPs) in the patatin like phospholipase domain containing-3 gene, particularly the rs738409 variant, being strongly associated with fat accumulation and fibrosis in the liver.

Furthermore, a systematic review and analysis of data from 12 studies involving 111,309 individuals found that the number of steps per day, particularly 8,800 steps per day, was associated with a significant reduction in the risk of overall mortality and cardiovascular diseases (CVD). Additionally, increasing physical activity was associated with a reduced risk of chronic liver disease overall and NAFLD specifically. Increasing physical activity by 2,500 steps per day was associated with a 38% reduction in chronic liver disease and a 47% reduction in NAFLD, regardless of obesity status.

This research aims to conduct a randomized study to provide advice to MASLD patients to modify their diet and wear pedometers to encourage changes in physical activity, with a goal of achieving at least 8,800 steps per day, compared to MASLD patients who only receive dietary advice and wear pedometers to record daily steps over a 24-week period.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Daily Step Count MASLD BMI Metabolic Syndrome NAFLD Insulin Resistance Genetic Polymorphism Cardiovascular Disease (CVD)

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Participants

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Active Comparator: Encourage using pedometer group.

MASLD patient who received pedometer recording and was encouraged to use actively.

Group Type EXPERIMENTAL

Encourage using pedometer

Intervention Type OTHER

MASLD patient used pedometer recording actively with encourage by care provider or investigator

Placebo comparator: Discourage using pedometer group

MASLD patient who received pedometer recording but without encouraged to use.

Group Type NO_INTERVENTION

No interventions assigned to this group

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Encourage using pedometer

MASLD patient used pedometer recording actively with encourage by care provider or investigator

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Participants must be diagnosed with MASLD according to the diagnostic criteria of the A multi-society Delphi consensus statement on new fatty liver disease nomenclature 2023, with evidence of hepatic steatosis and alcohol consumption of less than 140 grams per week for females or less than 210 grams per week for males, along with at least one of the clinical characteristics of metabolic syndrome.
2. Participants must be at least 18 years old at the time of enrollment.
3. Patients must consent to blood testing for the identification of the patatin like phospholipase domain containing-3 gene polymorphism.

Exclusion Criteria

1. Individuals who engage in regular exercise for at least 20 minutes per day, at least 3 days per week.
2. Individuals who have regular physical activity with walking exceeding 3000 steps per day before participating in the study.
3. Individuals diagnosed with other chronic liver diseases such as hepatitis B or C, autoimmune hepatitis, Wilson's disease, liver cancer, hemochromatosis, liver cirrhosis, or others.
4. Individuals diagnosed with diseases that may affect non-alcoholic fatty liver disease, such as HIV, various chronic inflammatory diseases, or connective tissue disorders.
5. Individuals taking medications known to promote fatty liver disease, including amiodarone, steroids, methotrexate, hormonal medications, or immunosuppressants.
6. Individuals who have previously taken medications known to impact fatty liver disease, including vitamin E, pioglitazone, Glucagon-like peptide-1 agonists, SGLT2 inhibitors.
7. Participants intending to join weight loss programs or undergo bariatric surgery for obesity treatment.
8. Individuals with cirrhosis.
9. Individuals diagnosed with liver cancer.
10. Individuals with severe chronic diseases still exhibiting symptoms during physical activity that may exacerbate the disease, such as coronary artery disease, chronic obstructive pulmonary disease, or severe osteoarthritis.
11. Patients with contraindications for undergoing MRI examinations, such as claustrophobia or having body implants or materials that are incompatible with MRI scanning.
12. Women who are pregnant.
13. Individuals who do not provide formal consent to participate in the research project.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Mahidol University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Phunchai Charatcharoenwitthaya

Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Division of Gastroenterology, Siriraj Hospital

Role: PRINCIPAL_INVESTIGATOR

Siriraj Hospital

Phunchai Charatcharoenwitthaya, MD

Role: PRINCIPAL_INVESTIGATOR

Siriraj Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Faculty of Medicine Siriraj Hospital

Bangkoknoi, Bangkok, Thailand

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Thailand

References

Explore related publications, articles, or registry entries linked to this study.

Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016 Jul;64(1):73-84. doi: 10.1002/hep.28431. Epub 2016 Feb 22.

Reference Type RESULT
PMID: 26707365 (View on PubMed)

Ekstedt M, Nasr P, Kechagias S. Natural History of NAFLD/NASH. Curr Hepatol Rep. 2017;16(4):391-397. doi: 10.1007/s11901-017-0378-2. Epub 2017 Nov 13.

Reference Type RESULT
PMID: 29984130 (View on PubMed)

Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol. 2017;960:1-17. doi: 10.1007/978-3-319-48382-5_1.

Reference Type RESULT
PMID: 28585193 (View on PubMed)

Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003 Sep;52(9):2191-7. doi: 10.2337/diabetes.52.9.2191.

Reference Type RESULT
PMID: 12941756 (View on PubMed)

Jeon CY, Lokken RP, Hu FB, van Dam RM. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care. 2007 Mar;30(3):744-52. doi: 10.2337/dc06-1842.

Reference Type RESULT
PMID: 17327354 (View on PubMed)

White T, Westgate K, Wareham NJ, Brage S. Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults. PLoS One. 2016 Dec 9;11(12):e0167472. doi: 10.1371/journal.pone.0167472. eCollection 2016.

Reference Type RESULT
PMID: 27936024 (View on PubMed)

LaMonte MJ, Lewis CE, Buchner DM, Evenson KR, Rillamas-Sun E, Di C, Lee IM, Bellettiere J, Stefanick ML, Eaton CB, Howard BV, Bird C, LaCroix AZ. Both Light Intensity and Moderate-to-Vigorous Physical Activity Measured by Accelerometry Are Favorably Associated With Cardiometabolic Risk Factors in Older Women: The Objective Physical Activity and Cardiovascular Health (OPACH) Study. J Am Heart Assoc. 2017 Oct 17;6(10):e007064. doi: 10.1161/JAHA.117.007064.

Reference Type RESULT
PMID: 29042429 (View on PubMed)

Kim D, Murag S, Cholankeril G, Cheung A, Harrison SA, Younossi ZM, Ahmed A. Physical Activity, Measured Objectively, Is Associated With Lower Mortality in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2021 Jun;19(6):1240-1247.e5. doi: 10.1016/j.cgh.2020.07.023. Epub 2020 Jul 16.

Reference Type RESULT
PMID: 32683103 (View on PubMed)

Saint-Maurice PF, Troiano RP, Berrigan D, Kraus WE, Matthews CE. Volume of Light Versus Moderate-to-Vigorous Physical Activity: Similar Benefits for All-Cause Mortality? J Am Heart Assoc. 2018 Apr 2;7(7):e008815. doi: 10.1161/JAHA.118.008815.

Reference Type RESULT
PMID: 29610219 (View on PubMed)

Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017 Mar 1;2(1):e000143. doi: 10.1136/bmjsem-2016-000143. eCollection 2016.

Reference Type RESULT
PMID: 28879026 (View on PubMed)

Kwak MS, Kim D, Chung GE, Kim W, Kim JS. The preventive effect of sustained physical activity on incident nonalcoholic fatty liver disease. Liver Int. 2017 Jun;37(6):919-926. doi: 10.1111/liv.13332. Epub 2016 Dec 24.

Reference Type RESULT
PMID: 27917585 (View on PubMed)

Kistler KD, Brunt EM, Clark JM, Diehl AM, Sallis JF, Schwimmer JB; NASH CRN Research Group. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease. Am J Gastroenterol. 2011 Mar;106(3):460-8; quiz 469. doi: 10.1038/ajg.2010.488. Epub 2011 Jan 4.

Reference Type RESULT
PMID: 21206486 (View on PubMed)

Asada F, Nomura T, Hosui A, Kubota M. Influence of increased physical activity without body weight loss on hepatic inflammation in patients with nonalcoholic fatty liver disease. Environ Health Prev Med. 2020 Jun 10;25(1):18. doi: 10.1186/s12199-020-00857-6.

Reference Type RESULT
PMID: 32522147 (View on PubMed)

Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Ledinghen V, Kumar M, Lupsor-Platon M, Han KH, Cardoso AC, Ferraioli G, Chan WK, Wong VW, Myers RP, Chayama K, Friedrich-Rust M, Beaugrand M, Shen F, Hiriart JB, Sarin SK, Badea R, Jung KS, Marcellin P, Filice C, Mahadeva S, Wong GL, Crotty P, Masaki K, Bojunga J, Bedossa P, Keim V, Wiegand J. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017 May;66(5):1022-1030. doi: 10.1016/j.jhep.2016.12.022. Epub 2016 Dec 28.

Reference Type RESULT
PMID: 28039099 (View on PubMed)

Stine JG, Munaganuru N, Barnard A, Wang JL, Kaulback K, Argo CK, Singh S, Fowler KJ, Sirlin CB, Loomba R. Change in MRI-PDFF and Histologic Response in Patients With Nonalcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol. 2021 Nov;19(11):2274-2283.e5. doi: 10.1016/j.cgh.2020.08.061. Epub 2020 Aug 31.

Reference Type RESULT
PMID: 32882428 (View on PubMed)

Hernaez R, Lazo M, Bonekamp S, Kamel I, Brancati FL, Guallar E, Clark JM. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011 Sep 2;54(3):1082-1090. doi: 10.1002/hep.24452.

Reference Type RESULT
PMID: 21618575 (View on PubMed)

Shen J, Wong GL, Chan HL, Chan RS, Chan HY, Chu WC, Cheung BH, Yeung DK, Li LS, Sea MM, Woo J, Wong VW. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2015 Jan;30(1):139-46. doi: 10.1111/jgh.12656.

Reference Type RESULT
PMID: 25040896 (View on PubMed)

Romero-Gomez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017 Oct;67(4):829-846. doi: 10.1016/j.jhep.2017.05.016. Epub 2017 May 23.

Reference Type RESULT
PMID: 28545937 (View on PubMed)

Koutoukidis DA, Koshiaris C, Henry JA, Noreik M, Morris E, Manoharan I, Tudor K, Bodenham E, Dunnigan A, Jebb SA, Aveyard P. The effect of the magnitude of weight loss on non-alcoholic fatty liver disease: A systematic review and meta-analysis. Metabolism. 2021 Feb;115:154455. doi: 10.1016/j.metabol.2020.154455. Epub 2020 Nov 29.

Reference Type RESULT
PMID: 33259835 (View on PubMed)

Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcoholic Steatohepatitis: A Review. JAMA. 2020 Mar 24;323(12):1175-1183. doi: 10.1001/jama.2020.2298.

Reference Type RESULT
PMID: 32207804 (View on PubMed)

Hallsworth K, Thoma C, Moore S, Ploetz T, Anstee QM, Taylor R, Day CP, Trenell MI. Non-alcoholic fatty liver disease is associated with higher levels of objectively measured sedentary behaviour and lower levels of physical activity than matched healthy controls. Frontline Gastroenterol. 2015 Jan;6(1):44-51. doi: 10.1136/flgastro-2014-100432. Epub 2014 Jun 30.

Reference Type RESULT
PMID: 25580206 (View on PubMed)

Koolhaas CM, van Rooij FJ, Cepeda M, Tiemeier H, Franco OH, Schoufour JD. Physical activity derived from questionnaires and wrist-worn accelerometers: comparability and the role of demographic, lifestyle, and health factors among a population-based sample of older adults. Clin Epidemiol. 2017 Dec 18;10:1-16. doi: 10.2147/CLEP.S147613. eCollection 2018.

Reference Type RESULT
PMID: 29296097 (View on PubMed)

Gerber L, Otgonsuren M, Mishra A, Escheik C, Birerdinc A, Stepanova M, Younossi ZM. Non-alcoholic fatty liver disease (NAFLD) is associated with low level of physical activity: a population-based study. Aliment Pharmacol Ther. 2012 Oct;36(8):772-81. doi: 10.1111/apt.12038. Epub 2012 Sep 8.

Reference Type RESULT
PMID: 22958053 (View on PubMed)

Joo JH, Kim HJ, Park EC, Jang SI. Association between sitting time and non-alcoholic fatty live disease in South Korean population: a cross-sectional study. Lipids Health Dis. 2020 Sep 23;19(1):212. doi: 10.1186/s12944-020-01385-6.

Reference Type RESULT
PMID: 32967678 (View on PubMed)

St George A, Bauman A, Johnston A, Farrell G, Chey T, George J. Independent effects of physical activity in patients with nonalcoholic fatty liver disease. Hepatology. 2009 Jul;50(1):68-76. doi: 10.1002/hep.22940.

Reference Type RESULT
PMID: 19444870 (View on PubMed)

Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Zvibel I, Goldiner I, Blendis L, Halpern Z, Oren R. Role of leisure-time physical activity in nonalcoholic fatty liver disease: a population-based study. Hepatology. 2008 Dec;48(6):1791-8. doi: 10.1002/hep.22525.

Reference Type RESULT
PMID: 18972405 (View on PubMed)

Mansour-Ghanaei R, Mansour-Ghanaei F, Naghipour M, Joukar F. The Lifestyle Characteristics in Non-Alcoholic Fatty Liver Disease in the PERSIAN Guilan Cohort Study. Open Access Maced J Med Sci. 2019 Sep 14;7(19):3313-3318. doi: 10.3889/oamjms.2019.647. eCollection 2019 Oct 15.

Reference Type RESULT
PMID: 31949537 (View on PubMed)

Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE, Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023 May 1;77(5):1797-1835. doi: 10.1097/HEP.0000000000000323. Epub 2023 Mar 17. No abstract available.

Reference Type RESULT
PMID: 36727674 (View on PubMed)

European Association for the Study of the Liver. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis - 2021 update. J Hepatol. 2021 Sep;75(3):659-689. doi: 10.1016/j.jhep.2021.05.025. Epub 2021 Jun 21.

Reference Type RESULT
PMID: 34166721 (View on PubMed)

Maximos M, Bril F, Portillo Sanchez P, Lomonaco R, Orsak B, Biernacki D, Suman A, Weber M, Cusi K. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology. 2015 Jan;61(1):153-60. doi: 10.1002/hep.27395. Epub 2014 Nov 25.

Reference Type RESULT
PMID: 25145475 (View on PubMed)

Anstee QM, Day CP. The Genetics of Nonalcoholic Fatty Liver Disease: Spotlight on PNPLA3 and TM6SF2. Semin Liver Dis. 2015 Aug;35(3):270-90. doi: 10.1055/s-0035-1562947. Epub 2015 Sep 17.

Reference Type RESULT
PMID: 26378644 (View on PubMed)

Krawczyk M, Rau M, Schattenberg JM, Bantel H, Pathil A, Demir M, Kluwe J, Boettler T, Lammert F, Geier A; NAFLD Clinical Study Group. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study. J Lipid Res. 2017 Jan;58(1):247-255. doi: 10.1194/jlr.P067454. Epub 2016 Nov 11.

Reference Type RESULT
PMID: 27836992 (View on PubMed)

Akuta N, Kawamura Y, Arase Y, Suzuki F, Sezaki H, Hosaka T, Kobayashi M, Kobayashi M, Saitoh S, Suzuki Y, Ikeda K, Kumada H. Relationships between Genetic Variations of PNPLA3, TM6SF2 and Histological Features of Nonalcoholic Fatty Liver Disease in Japan. Gut Liver. 2016 May 23;10(3):437-45. doi: 10.5009/gnl15163.

Reference Type RESULT
PMID: 26610348 (View on PubMed)

Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008 Dec;40(12):1461-5. doi: 10.1038/ng.257. Epub 2008 Sep 25.

Reference Type RESULT
PMID: 18820647 (View on PubMed)

Trepo E, Romeo S, Zucman-Rossi J, Nahon P. PNPLA3 gene in liver diseases. J Hepatol. 2016 Aug;65(2):399-412. doi: 10.1016/j.jhep.2016.03.011. Epub 2016 Mar 30.

Reference Type RESULT
PMID: 27038645 (View on PubMed)

Boeckmans J, Gatzios A, Schattenberg JM, Koek GH, Rodrigues RM, Vanhaecke T. PNPLA3 I148M and response to treatment for hepatic steatosis: A systematic review. Liver Int. 2023 May;43(5):975-988. doi: 10.1111/liv.15533. Epub 2023 Feb 16.

Reference Type RESULT
PMID: 36719059 (View on PubMed)

Stens NA, Bakker EA, Manas A, Buffart LM, Ortega FB, Lee DC, Thompson PD, Thijssen DHJ, Eijsvogels TMH. Relationship of Daily Step Counts to All-Cause Mortality and Cardiovascular Events. J Am Coll Cardiol. 2023 Oct 10;82(15):1483-1494. doi: 10.1016/j.jacc.2023.07.029. Epub 2023 Sep 6.

Reference Type RESULT
PMID: 37676198 (View on PubMed)

Schneider CV, Zandvakili I, Thaiss CA, Schneider KM. Physical activity is associated with reduced risk of liver disease in the prospective UK Biobank cohort. JHEP Rep. 2021 Mar 2;3(3):100263. doi: 10.1016/j.jhepr.2021.100263. eCollection 2021 Jun.

Reference Type RESULT
PMID: 33898961 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

SI 172/2024

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

SUMCO Metabolic Syndrome Project
NCT01278628 COMPLETED PHASE1
Effectiveness of MD on MetS Patients
NCT06961682 NOT_YET_RECRUITING NA