Effects of Blood Pressure on Cognition and Cerebral Hemodynamics in PD
NCT ID: NCT06252376
Last Updated: 2024-12-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
NOT_YET_RECRUITING
NA
60 participants
INTERVENTIONAL
2025-02-15
2029-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
* Is there a certain level of blood pressure that correlates with change in cognitive performance while upright?
* Is there a certain level of change in brain blood flow that correlates with change in cognitive performance when upright?
* How does cognitive performance differ between persons with Parkinson's disease that have orthostatic hypotension and those without orthostatic hypotension?
* How does cognitive performance differ between the supine (laying down) and upright positions?
* How do blood pressure and brain blood predict changes in cognitive performance over two years?
Participants in this study will undergo the following procedures:
* Complete a screening visit with questionnaires, medical history, physical exam, and head-up tilt-table test.
* Attend one baseline study visit, during which they will undergo a battery of computerized cognitive tests repeated twice: once while laying down and once while upright on a tilt table. Simultaneously, during the experiments we will measure blood pressure using a wrist-worn device and inflatable arm cuff and will measure brain blood flow using functional near-infrared spectroscopy (fNIRS), a non-invasive device that uses light sensors to detect changes in brain blood flow.
* Attend one two-year follow-up visit, during which they will repeat a battery of computerized cognitive tests repeated twice: once while laying down and once while upright on a tilt table. During this visit, like before, we will measure blood pressure using a wrist-worn device and inflatable arm cuff and will measure brain blood flow using functional near-infrared spectroscopy (fNIRS).
Researchers will compare participants with Parkinson's disease with and without orthostatic hypotension in the laying down and upright positions to see if there are changes in thinking abilities between these groups.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This project's objective is to determine how BP affects positional cognitive performance and brain blood flow in PD. We hypothesize that in person with PD patients with OH, but not those without OH, a critical threshold of cerebral hypoperfusion correlates with acute, temporary cognitive deficits when upright compared to supine and contributes to chronic cognitive decline.
The proposed experiments will close the existing knowledge gaps by determining the associations between BP and cerebral hemodynamics (brain blood flow) with cognitive performance. Experiments will be performed at baseline and repeated at two years. Sixty non-demented individuals with PD with OH (n=30) and without OH (n=30) will complete a computerized battery of cognitive tests in the supine and upright positions on a tilt table while undergoing simultaneous, non-invasive, continuous monitoring of BP and brain hemodynamics using functional near-infrared spectroscopy (fNIRS). Aim 1 will determine how BP relates to cognitive performance while supine and while upright. Aim 2 will use fNIRS to determine how cerebral hemodynamics (fNIRS) relate to cognitive performance and BP. Aim 3 will repeat the baseline assessments at a two-year follow-up visit to determine which BP and fNIRS measures are most associated with cognitive decline. We will compare these outcomes in participants with and without OH. This study will yield novel data about the short-term and long-term effects of low BP on cognitive performance and brain hemodynamics. Improving understanding of how BP affects cognition in PD will advance knowledge toward developing treatment targets to reverse, prevent, or delay OH-related cognitive impairment.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Supine cognitive testing first
Participants will undergo a computerized cognitive battery in the supine position, followed by a similar battery with alternate test versions in the upright position while on a head-up tilt table.
Head-up tilt table
Different versions of cognitive assessments will be administered in the supine and upright positions while the participant is on the tilt table.
Upright cognitive testing first
Participants will undergo a computerized cognitive battery in the upright position, followed by a similar battery with alternate test versions in the supine position while on a head-up tilt table.
Head-up tilt table
Different versions of cognitive assessments will be administered in the supine and upright positions while the participant is on the tilt table.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Head-up tilt table
Different versions of cognitive assessments will be administered in the supine and upright positions while the participant is on the tilt table.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age least 50 years old
* Hoehn \& Yahr (H\&Y) stages I to III (early to moderate stage PD)
* Proficiency in the English language (native English speaker level)
Exclusion Criteria
* Taking antihypertensive medications or alpha-adrenergic blocking medications since these can cause hypotension.
* Dementia (including PD dementia (Emre, 2007) characterized by either Dementia Rating Scale 2 (DRS-2) score) 124 or less or clinical evidence of impaired instrumental activities of daily living
* History of deep brain stimulation (DBS) surgery
* Any unstable, active medical problem, e.g., decompensated heart failure, liver failure, etc.
* Moderate or severe carotid artery stenosis (according to North American Symptomatic Carotid Endarterectomy Trial (NASCET) criteria (Ferguson, 1999)
* History of cerebral infarction or hemorrhage
* Uncontrolled diabetes or any other systemic disease that causes autonomic failure
* Any terminal illness with life expectancy less than 2 years
* Illiteracy
* Impairment of hearing or vision that is not corrected by devices (e.g., hearing aids or glasses)
* Currently pregnant (will be confirmed with a urine pregnancy screening test in people of child-bearing potential)
* Any other condition, which, in the opinion of the investigator, could place the participant at increased risk (e.g., substance abuse)
50 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of California, San Diego
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Katie Longardner
Assistant Clinical Professor of Health Sciences
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Longardner K, Bayram E, Litvan I. Orthostatic Hypotension Is Associated With Cognitive Decline in Parkinson Disease. Front Neurol. 2020 Sep 2;11:897. doi: 10.3389/fneur.2020.00897. eCollection 2020.
Freeman R, Illigens BMW, Lapusca R, Campagnolo M, Abuzinadah AR, Bonyhay I, Sinn DI, Miglis M, White J, Gibbons CH. Symptom Recognition Is Impaired in Patients With Orthostatic Hypotension. Hypertension. 2020 May;75(5):1325-1332. doi: 10.1161/HYPERTENSIONAHA.119.13619. Epub 2020 Mar 30.
Gibbons CH, Schmidt P, Biaggioni I, Frazier-Mills C, Freeman R, Isaacson S, Karabin B, Kuritzky L, Lew M, Low P, Mehdirad A, Raj SR, Vernino S, Kaufmann H. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol. 2017 Aug;264(8):1567-1582. doi: 10.1007/s00415-016-8375-x. Epub 2017 Jan 3.
Udow SJ, Robertson AD, MacIntosh BJ, Espay AJ, Rowe JB, Lang AE, Masellis M. 'Under pressure': is there a link between orthostatic hypotension and cognitive impairment in alpha-synucleinopathies? J Neurol Neurosurg Psychiatry. 2016 Dec;87(12):1311-1321. doi: 10.1136/jnnp-2016-314123. Epub 2016 Sep 9.
McDonald C, Newton JL, Burn DJ. Orthostatic hypotension and cognitive impairment in Parkinson's disease: Causation or association? Mov Disord. 2016 Jul;31(7):937-46. doi: 10.1002/mds.26632. Epub 2016 Apr 19.
Poda R, Guaraldi P, Solieri L, Calandra-Buonaura G, Marano G, Gallassi R, Cortelli P. Standing worsens cognitive functions in patients with neurogenic orthostatic hypotension. Neurol Sci. 2012 Apr;33(2):469-73. doi: 10.1007/s10072-011-0746-6. Epub 2011 Sep 6.
Centi J, Freeman R, Gibbons CH, Neargarder S, Canova AO, Cronin-Golomb A. Effects of orthostatic hypotension on cognition in Parkinson disease. Neurology. 2017 Jan 3;88(1):17-24. doi: 10.1212/WNL.0000000000003452. Epub 2016 Nov 30.
Pinti P, Tachtsidis I, Hamilton A, Hirsch J, Aichelburg C, Gilbert S, Burgess PW. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci. 2020 Mar;1464(1):5-29. doi: 10.1111/nyas.13948. Epub 2018 Aug 7.
Palma JA, Gomez-Esteban JC, Norcliffe-Kaufmann L, Martinez J, Tijero B, Berganzo K, Kaufmann H. Orthostatic hypotension in Parkinson disease: how much you fall or how low you go? Mov Disord. 2015 Apr 15;30(5):639-45. doi: 10.1002/mds.26079. Epub 2015 Feb 12.
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015 Oct;30(12):1591-601. doi: 10.1002/mds.26424.
Kaufmann H, Malamut R, Norcliffe-Kaufmann L, Rosa K, Freeman R. The Orthostatic Hypotension Questionnaire (OHQ): validation of a novel symptom assessment scale. Clin Auton Res. 2012 Apr;22(2):79-90. doi: 10.1007/s10286-011-0146-2. Epub 2011 Nov 2.
Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N; Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008 Nov 15;23(15):2129-70. doi: 10.1002/mds.22340.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
210738a
Identifier Type: -
Identifier Source: org_study_id